Мирослав М. Соврлич

ИСПИТИВАЊЕ АНТИМИКРОБНЕ И
АНТИОКСИДАТИВНЕ АКТИВНОСТИ ЕКСТРАКАТА
ТРИ ОДАБРАНЕ БИЈНЕ ВРСТЕ РОДА DAPHNE

ДОКТОРСКА ДИСЕРТАЦИЈА

КРАГУЈЕВАЦ, 2015.
Ова докторска дисертација урађена је у лабораторијама Факултета медицинских наука, Универзитета у Крагујевцу, биохемијској лабораторији Агрономског факултета у Чачку и лабораторијама Департмана за биологију и екологију Природно-математичког факултета Универзитета у Нишу. Ово истраживање урађено је у оквиру пројекта бр. 172015, Министарства за науку и технолошки развој Републике Србије и Јуниор пројекта бр. 06/11, Факултета медицинских наука, Универзитета у Крагујевцу.

Желим да изразим своју искрену и неизмерну захвалност особама које су биле уз мене током изrade ове докторске дисертације, и својим делима дали велики допринос да се она и заврши:

Захваљујем др. Марињи Јушковић, доценту Природно-математичког факултета Универзитета у Нишу, на помоћи у прикупљању и детерминацији биљног материјала.

Велико хваљу проф. др Перици Васиљевићу, ванредном професору Природно-математичког факултета Универзитета у Нишу, на помоћи у реализацији HPLC анализа узорака и бројним стручним саветима и сугестијама.

Др. Павлу Машковићу, доценту Агрономског факултета у Чачку, захваљујем на помоћи у извођењу спектрофотометријских анализе и одређивању антимикробне активности испитиваних екстраката, али и на несебичној подршци, добронамерним саветима, позитивној енергији и пријатељству током читавог нашем познанства.

Хвала колегама и многобројним пријатељима, који су били уз мене и на различите начина помогли од самог почетка израде ове докторске дисертације да се она и заврши.

Хвала мојој породици на подршци, разумевању и свему што су учинили за мене.

Ваш Мирослав
САДРЖАЈ:

1. УВОД.. 1
 1.1. Биљке традиционалне медицине као извор нових лекова......................... 1
 1.2. Тенденција и употреба биљака у данашње време.................................. 2

2. ЦИЉЕВИ РАДА И ХИПОТЕЗЕ... 4
 2.1. Циљеви истраживања.. 5
 2.2. Хипотезе истраживања... 5

3. ОПШТИ ДЕО ... 7
 3.1. СЕКУНДАРНИ МЕТАБОЛИТИ БИЉАКА .. 8
 3.1.2. Биосинтетички путеви секундарних метаболита................................. 8
 3.2. Полифенолни секундарни метаболити.. 11
 3.2.1. Класификација фенола.. 11
 3.3. Кумарини.. 13
 3.3.1. Кумарини као антиоксиданси... 15
 3.4. ОКСИДАТИВНИ СТРЕС И ПЕРОКСИДАЦИЈА ЛИПИДА................................ 17
 3.4.1. Феноли као инхибицитори липидне пероксидације 18
 3.5. Секундарни метаболити биљака као извор нових антимикробних агенаса 20
 3.6. ТАКСОНОМИЈА, ДИСТРИБУЦИЈА И ОПИС РОДА DAPHNE 21
 3.6.1. Таксономија и дистрибуција ... 21
 3.6.2. Опис биљних врста рода Daphne... 21
 3.6.2.1. Daphne blagayana L. .. 22
 3.6.2.2. Daphne cneorum L. ... 22
 3.6.2.3. Daphne alpina L. ... 23
 3.7. БИЉНЕ ВРСТЕ РОДА DAPHNE: ФАРМАКОЛОШКИ СКРИНИНГ И УПОТРЕБА У ТРАДИЦИОНАЛНОЈ МЕДИЦИНИ .. 24
 3.7.1. Токсични ефекти врста рода Daphne .. 27
 3.8. ХЕМИЈСКИ КОНСТИТУЕНТИ ВРСТА РОДА DAPHNE И ЊИХОВЕ БИОЛОШКЕ И ФАРМАКОЛОШКЕ АКТИВНОСТИ .. 28
 3.8.1. Кумарини ... 28
 3.8.2. Флавоноиди .. 31
 3.8.3. Бифлавоноиди (спиробифлавоноиди).. 32
3.8.4. Терпени... 34
3.8.5. Сесквитерпеноиди.. 34
3.8.6. Дитерпени дафнанског типа.................................... 34
3.8.7. Тритерпени... 37
3.8.8. Стероидни молекули... 38
3.8.9. Лигнананска једињења... 38

4. МАТЕРИЈАЛ И МЕТОДЕ РАДА... 40

4.1. Прикупљање и припрема биљног материјала за екстракцију......... 41
4.2. Хемикалије и реагенси... 41
4.3. Добијање екстраката.. 41
4.4. ИСПИТИВАЊЕ ХЕМИЈСКОГ САСТАВА ЕКСТРАКАТА......................... 42
 4.4.1. UV/Vis спектрофотометријска анализа екстраката................. 42
 4.4.2. Одређивање укупног фенолног садржаја............................... 42
 4.4.3. Одређивање укупног флавоноидног садржаја........................... 43
 4.4.4. HPLC-UV анализа екстраката... 44
4.5. ИСПИТИВАЊЕ АНТИОКСИДАТИВНЕ АКТИВНОСТИ ЕКСТРАКАТА........... 45
 4.5.1. Одређивање укупног антиоксидативног капацитета..................... 45
 4.5.2. Одређивање DPPH „скевинцер” активности................................ 45
 4.5.3. Метода инхибиције липидне пероксидације.............................. 47
 4.5.4. Fe²⁺ хелатациона активност... 47
 4.5.5. Одређивање способности неутралисања ОН’ радикала.................. 49
4.6. ИСПИТИВАЊЕ АНТИМИКРОБНЕ АКТИВНОСТИ ЕКСТРАКАТА............... 51
 4.6.1. Бактеријски и гљивични сојеви... 51
 4.6.2. Микродилуциона метода.. 51
4.7. СТАТИСТИЧКА ОБРАДА ПОДАТАКА... 53

5. РЕЗУЛТАТИ ... 54

5.1. Екстракција метанолом и хлороформом.................................. 55
5.2. ХЕМИЈСКИ САСТАВ ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA. 56
 5.2.1. Садржај укупних фенола и флавоноида у екстрактима................. 56
5.2.1.1. Укупни феноли и флавоноиди у испитиваним екстрактима врсте D. blagayana... 57
5.2.1.2. Укупни феноли и флавоноиди у испитиваним екстрактима врсте D. cneorum.. 58
5.2.1.3. Укупни феноли и флавоноиди у испитиваним екстрактима врсте D. alpina... 59

5.3. АНТИОКСИДАТИВНЕ АКТИВОСТИ ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA .. 60

5.3.1. Укупан антиоксидативни капацитет испитиваних екстраката.............................. 60
5.3.2. Капацитет неутралисања DPPH и OH радикала испитиваних екстраката...... 62
5.3.3. Инхибиција липидне пероксидације и Fe^{2+} хелатациона активност испитиваних екстраката... 65

5.4. HPLC-UV АНАЛИЗА ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA.... 68

5.4.1. HPLC анализа испитиваних екстраката врсте D. blagayana.......................... 68
5.4.2. HPLC анализа испитиваних екстраката врсте D. alpina................................. 75
5.4.3. HPLC анализа испитиваних екстраката врсте D. cneorum.............................. 81

5.5. АНТИМИКРОБНА АКТИВНОСТ ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA .. 87

5.5.1. Антимикробна активност испитиваних екстраката врсте D. blagayana.................. 87
5.5.2. Антимикробна активност испитиваних екстраката врсте D. cneorum...................... 89
5.5.3. Антимикробна активност испитиваних екстраката врсте D. alpina.......................... 91

5.6. КОМПАРАТИВНА СТАТИСТИЧКА АНАЛИЗА ДОБИЈЕНИХ РЕЗУЛТАТА... 93

5.6.1. Једнофакторска анализа варијансе укупних фенола, флавоноида и антооксидативних активности... 93
5.6.2. Tukey’s HSD тестирање укупног фенолног садржаја испитиваних екстраката... 93
5.6.3. Tukey´s HSD тестирање укупног флавоноидног садржаја испитиваних екстраката
5.6.4. Tukey´s HSD тестирање укупног укупног антиоксидативног капацитета испитиваних екстраката
5.6.5. Tukey´s HSD тестирање DPPH „скевинџер” активности испитиваних екстраката
5.6.6. Tukey´s HSD тестирање инхибиције липидне пероксидације испитиваних екстраката
5.6.7. Tukey´s HSD тестирање Fe²⁺ хелатациона активности испитиваних екстраката
5.6.8. Tukey´s HSD тестирање способности неутралисања OH⁻ радикала испитиваних екстраката

6. ДИСКУСИЈА

7. ЗАКЉУЧЦИ

8. ЛИТЕРАТУРА
1. УВОД
Коришћење биљака у лековите сврхе и проналажење биоактивних молекула у биљкама је древна идеја. На свим континентима, употреба великог броја различитих приправака добијених од аутохтоних биљака датира од праисторије. Постоје подаци да су Неандерталци, који су живели пре око 60.000 година на просторима данашњег Ирана користили биљке у различите сврхе (на пример високи слез) [1]. Ове биљке и даље налазе велику примену у традиционалној медицини широм света. Историјски гледано, терапеутски резултати коришћења лековитог биља су били различити, од излечења и ублажавања симптома болести, до испољавања токсичних ефekата па и смрти. Процењује се да на Земљи постоји 250 000 до 350 000 различитих биљних врста. Релативно мали број (до 10%) биљака је до сада коришћен у исхране људи или животиња, али је вероватно много већи број коришћен у медицинске сврхе [2]. Хипократ (крајем V века пре н.е.) описује 300-400 медицинских биљака. У првом веку нове ере, Диоскорид је написао дело De Materia Medica, медицински биљни каталог који представља прототип модерне фармакогнозије [3]. У Библији је описано тридесетак лековитих биљака. Међу описаним биљкама се налазе и тамјан и смирна, које су биле веома цењене због свог лековитог дејства [4]. Падом древних цивилизација велики број докумената о биљним лековима је уништен или изгубљен, што је утицало на напредак Западне медицине. Током Ренесансе, на Западу долази до „оживљавања“ древне медицине, која је углавном била базирана на биљним лековима [5].

1.1. Биљке традиционалне медицине као извор нових лекова

Изоловање појединих алкалоида из опијума почетком деветнаестог века представља кључни догађај у развоју модерне фармације. Изолована једињења су имала исту, или много јачу активист од биљног материјала који је коришћен, што је отворило пут у коришћењу чистих молекула за третман различитих болести. Од тада су уложена велика средства у синтези нових лекова, али и у изоловању молекула из природних ресурса и њихов развој у лекове. Молекули изоловани из биљног материјала који се користио у традиционалној медицини, су послужили у дизајну нових, синтетских лекова, увођењем активних хромофора у постојећи природни молекул. Тако је на пример из листа јаборандуса (Pilocarpus jaborandi), који се користио у Бразилској традиционалној медицини за изазивање знојења, изолован пилокарпин који се користи у конвенционалној
Мирослав Соврлић
Докторска дисертација

медицини као миотик у лечењу глаукома [6]. Натријум хромогликат, атракуријум и остали
миорелаксанси, етозе посред, неостигмин и многи други су конвенционални лекови који су
развијени из молекула пронађених у биљакама традиционалне медицине [7]. Иако се
generално под „открићем лекова“ сматра изоловање активних молекула, треба имати на
уму да лечење болести неким „леком“ може подразумевати и употребу смеше једињења.
Такав случај се јавља код употребе биљних екстраката и осталих природних супстанци
које садрже више активних супстанци. Такви екстракти, углавном на основу
традиционалне употребе у одређеном делу света, се све више користе као комплементарни
проступ лечења у Западној медицини. Примери таквих препарата су екстракти гинка (у
третману деменције), ђавоље канце (у терапији реуматизма), тестирасте палме (Saw
palmetto, у терапији бенигне хиперплазије простате) и многи други [8,9]. Научни значај
етнофармакологије је велики што се огледа у формирању Интернационалног удружења
етнофармаколога као и Европског удружења за етнофармакологију [10].

Откриће нових лекова из природних ресурса се састоји из неколико фаза. У првој
фази се углавном разматрају подаци о традиционалној употреби биљног материјала који из
неког разлога може бити повезан са медицинском употребом. Разматрање традиционалне
употребе неке биљке представља основ за могућу претпоставку да биљка испољава неку
биолошку и фармаколошку активност. Уколико постоје индикације у испољавању неке
активности, потребно је биљку индентификовати и окарактерисати према научној
номенклатури. Након спровођења релевантних тестова биолошких активности, одлучује се
о спровођењу изоловања и структурне идентификације присутних молекула, који могу
бити одговорни за испољене активности. „Активни“ молекули се откривају кроз неколико
циклуса фракционисања екстраката повезано са тестирањем активности сваке фракције, до
изоловања чистих молекула из активних фракција. Ови молекули, по утврђивању њихове
активности и структуре, служе за развој клинички корисних производа [11].

1.2. Тенденција и употреба биљака у данашње време

Биљке имају битну улогу одржавању здравља људи и побољшању квалитета
људског живота. Оне су битна компонента исхране људи, али се користе и у осталим
сферања људског живота налазећи примену као лековита средства, конзерванси, састојци
козметичких препарата, боја и остала. Употреба лековитог биља одувек је била део људске
културе. Светска здравствена организација процењује да се 80% људске популације ослања на неку од традиционалних метода лечења у примарној здравственој нези [12]. У неким земљама, владе се више залажу за коришћење аутохтоних метода лечења него за употребу скупих увозних лекова. У протеклих сто година масовна производња и употреба хемијски синтетизованих лекова су саставни део система здравствене заштите. Међутим, велики део становништва, нарочито у земљама у развоју, се и даље ослања на традиционалне методе лечења и употребу биљних лекова у спровођењу здравствене заштите. На пример, у Африци се 90% становништва ослања на традиционалне методе лечења, у Индији 70%, док у Кини традиционална медицина чини 40% свих система здравствене заштите а више од 90% општих болница имају јединице за традиционалну медицину [13, 14, 15]. Међутим, употреба традиционалне медицине није ограничена само на земље у развоју. У протекле две деценије, интересовање за традиционалне методе лечења, са посебним акцентом на фитотерапију, је у знатном порасту и у високо развијеним земљама. Истраживање спроведено у Сједињеним америчким државама током 2007. године показало је да је неку од традиционалних метода лечења користило око 38% одраслих и 12% деце [16, 17]. Према истраживању Националног центра комплементарне и алтернативне медицине биљна терапија, са изузетком витамина и минерала, је најчешће коришћена метода алтернативне медицине [18].
2. ЦИЉЕВИ РАДА И ХИПОТЕЗЕ
2.1. Циљеви истраживања

Имајући у виду да је у до сада испитаним Daphne врстама потврђено присуство различитих класа sekundарних метаболита које испољавају широк спектар биолошких активности, за циљеве ове докторске дисертације постављено је испитивање хемијског састава, антимикробне и антиоксидативне активности три биљне врсте овог рода које расту на подручју Србије: Daphne blagayana L., Daphne cneorum L. и Daphne alpina L. Циљеви истраживања су следећи:

- Прикупљање самониклих биљних врста D. blagayana, D. cneorum и D. alpina са различитих локалитета у Србији;
- Припрема хлороформских и метанолских екстраката гранчица и листова методом екстракције по Soxhlet-u;
- Фитохемијска анализа добијених екстраката која је обухватала спектрофотометријско одређивање укупних фенола и флавоноида у испитиваним узорцима;
- HPLC-UV (High Performance Liquid Chromatography-Ultraviolet Spectroscopy) анализу екстраката у циљу идентификације најзаступљенијих метаболита;
- Испитивање антиоксидативне активности екстраката (in vitro) које је обухватало: одређивање укупног антиоксидативног капацитета, способност екстраката у неутралисању слободних радикалних врста (DPPH- и ОН-), Fe²⁺ хелатациона активност екстраката и утицај екстраката на инхибицију липидне пероксидације;
- Испитивање антибактеријске и антифунгалне активности добијених екстраката на одабраним ATCC микробиолошким сојевима (in vitro).

2.2. Хипотезе истраживања:

1. Метанолски и хлороформски екстракти гранчица и листова врста D. cneorum, D. alpina и D. blagayana имају различит садржај фенола и флавоноида.
2. Испитивани ектракти различитих делова исте врсте и делова различитих Daphne врста садрже различите најзаступљеније sekundарне метаболите.
3. Испитивани метанолски и хлороформски екстракти гранчица и листова врста D. cneorum, D. alpina и D. blagayana испољавају специфичне антимикробне активности.

4. Испитивани метанолски и хлороформски екстракти гранчица и листова врста D. cneorum, D. alpina и D. blagayana испољавају специфичне антиоксидативне активности.

5. Метанолски и хлороформски екстракти испитиваних Daphne врста могу наћи своју потенцијалну примену као антиоксидативни и антимикробни агенси.
3. ОПШТИ ДЕО
3.1. Секундарни метаболити биљака

Поред биомолекула који се синтетишу у свим биљкама и чине примарни метаболизам (угљени хидрати, нуклеинске и масне кисeline, аминокиселине и протеини), лековите биљке продукују и друге молекуле, који су ограничене дистрибуције, а називају се секундарним метаболитима. Неке групе секундарних метаболита се синтетишу само у одређеном биљном роду или биљној врсти, док су неке друге групе секундарних метаболита широко распрострањене у различитим биљним фамилијама (нпр. феноли, flavonoиди, антиоцијани итд.). Није потпуно јасно зашто биљке продукују специфичне секундарне метаболите и која је њихова улога, али се за неке од њих зна да имају одређену функцију у самој биљци. На пример, неки секундарни метаболити су токсични и штите биљку од предатора, док су неки привлачни за инсекте и помажу опрашивање биљака [19]. Значајна фармаколошка дејства секундарних метаболита допринела су употреби лековитих биљака за различите третмане, као и за изоловање биоактивних супстанци које су нашле широку примену у модерној медицини (нпр. кодеин, дигоксин, ефедрин итд.) [20]. Најчешће присутни секундарни метаболити у биљкама су алкалоиди, фенолни хетерозиди и њихови деривати и терпени.

3.1.2. Биосинтетички путеви секундарних метаболита

Биосинтеза секундарних метаболита је процес који укључује ензимски каталисане биохемијске реакције [21]. Главни биосинтетички путеви секундарних метаболита у биљкама су:

- Пут мевалонске киселине, којим настају изопреноиди (стероиди и терпеноиди);
- Пут шикимске киселине, којим настају фенолна једињења и ароматичне аминокиселине;
- Ацетогенински пут, којим настају масне киселине, воскови, фосфолипиди, поликетиди (антрахинони, афлатоксини, макролиди) и поликетиди мешовитог порекла (флавоноиди).

Метаболички пут шикимске киселине представља главни пут биосинтезе фенолних једињења у биљкама, при чему поред настајања ароматичних аминокиселина настаје гална, протокатехинска и циметна киселина (слика 1) [22].
Слика 1. Биосинтеза фенолних јединења циклусом шикимске киселине
Циклус почиње реакцијом фосфоенолпирувата (РЕР) и D-еритроза-4-фосфата у којој настаје 3-дезокси-D-арабино-7-фосфат-хентуолска киселина (ДАХП). Низом веома сложених биохемијских реакција настаје шикимска киселина из које настаје фенилалалин. Фенилалалин, настао током циклуса шикимске киселине, деаминацијом у присуству фенилаланинамониумилазе даје циметну киселину, која се даље трансформише до осталих C₆–C₃ фенилпропаноида, кумаринске, кофеинске, ферулне и синапинске киселине и њихових деривата (слика 2) [23]. Кумарини настају из циметне киселине преко транс-2-кумаринске киселине, циклизацијом која обухвата неензимску трансформацију природног trans-облика у cis-изомер. Редукцијом ферулне киселине настаје кониферил алкохол, важан прекурсор лигнина.

Слика 2. Шематски приказ биосинтезе различитих фенолних једињења из једноставних фенилпропаноида
3.2. Полифенолни секундарни метаболити

До сада је откривено око 8000 полифенолних једињења која су пореклом из биљака, а половину тих молекула чине фловоноиди [24]. Биљни феноли могу бити једноставних структура, као што су фенолне киселине, флопропаноиди и фенолни хинони. Неколико важних полимерних фенолних секундарних биљних метаболита су лигнини, танини и меланини. Такође, фенолне групе се могу наћи и у алкалоидима и терпенима.

Фенолни молекули су одговорни за боју, мирис и укус биљака, хране и пића. Испољавају бројне биолошке активности. На пример, фловоноид кверцетин испољава антиинфламаторну активност а сиблиб антитоксинсичну активност [25, 26]. Одређени изофловоноиди, као што су генистеин и даидзеин, су фитоестрогени, док остали делују као инсектициди и пестициди [27, 28]. Антоцијани су одговорни за јарке боје цветова биљака и имају јасно дефинисану функцију у привлачењу и опрашивању биљака [29]. Многа фенолна једињења су антиоксиданси и ефикасни сакупљачи слободних радикала [30].

3.2.1. Класификација фенола

Природни феноли у својој структури имају бензенов прстен и једну или више хидроксилних група. На основу растворљивости, могу се поделити на хидрофилне и липофилне. Већина полифенола су хидросолубилни молекули који се налазе у вакуалама биљне ћелије. Липофилни полифеноли се налазе у ћелијској цитоплазми, у саставу биљних воскова и екскудата [31].

Једноставна класификација биљних фенолних једињења је веома компликована, пре свега због њиховог великог броја и разноликости. Могу се класификовати према својој структури или биосинтетичком пореклу, али ни један од ова два система није идеалан. На слици 3 су приказане основне класе природних фенола и њихови представници.
<table>
<thead>
<tr>
<th>Класа (пример)</th>
<th>Класа (пример)</th>
<th>Класа (пример)</th>
<th>Класа (пример)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Једноставни феноли (арбутина)</td>
<td>Цинаминоске киселине (кафена киселина)</td>
<td>Ксантона (мангиферин)</td>
<td>Флавоноиди (кемферол)</td>
</tr>
<tr>
<td>Фенолне киселине (салцилна киселна)</td>
<td>Кумарини (умбелиферон)</td>
<td>Стилбеноиди (ресвератрол)</td>
<td>Лигнани (ентеродиол)</td>
</tr>
<tr>
<td>Бензофурани (усниска киселина)</td>
<td>Нафтоинони (југлон)</td>
<td>Антрахинони (емодин)</td>
<td>Бифлавоноиди (морелофлафон)</td>
</tr>
</tbody>
</table>

Слика 3. Основне класе и примери природних фенола
3.3. Кумарини

Кумарини су аналози бензопирона који су широко распрострањени у природи [32]. Представљају велику групу фенолних секундарних метаболита биљака који садрже бензенов и α-пиронов прстен (слика 4). До данас је откривено преко 1300 кумаринских деривата, који су углавном биљног порекла, али неке од њих могу синтетисати и бактерије и гљиве [33]. Кумарин (1,2-бензопирон) је најједноставнији кумарински молекул чијом супституцијом у различитим положајима настаје велики број кумаринских деривата. Спојени хетероцикллични прстен кумарина је послужио за синтезу широког спектра аналога у циљу испитивања њихових биолошких активности. Једноставни кумарини који се најчешће срећу у природи су супституисани на положају С7, као што су умбелиферон и херниарин (слика 4), али до супституције може доћи и на другим положајима (најчешће на C6 и C8) [34]. Једноставни кумарини имају карактеристичан пријатан мирис. Тако, кумарин има карактеристичан мирис покошеног сена, а неки од осталих једноставних кумарина се могу користити у производњи парфема. Међутим, пријатан мирис се губи уколико дође до конугације са шећерима и киселинама. Кумарин се користи као фиксатор и појачивач мириса у производњи парфема, тоалетних сапуна и детерџената, пасти за зубе, дуванским производима и неким алкохолним пићима [35, 36]. Такође, налазе примену у индустрији гума, пластичних материјала и боја као неутрализатори непријатних мириса [37, 38]. Изокумарини имају сличну структуру кумаринима (слика 4). Њихове особине и дејства нису детаљно истражени, али неки од њих показују биолошке активности. На пример, фитоалексин, 6-метокси-8-хидроксис-3-метил-3,4-дијирдроксикумарин (познат и као 6-метокси-мелеин) који настаје инфекцијом корена шаргарепе, поседује добре антибактеријалне особине [39]. Такви молекули могу имати комерцијалну примену нарочито у погледу њихове очигледно ниске токсичности [40]. Постоје и друге супстанце које су сличне кумаринима, а поседују изражена биолошка дејства. То су фуранокумарини и пиранокумарини [41]. Биљни деривати кумарина су и псоралени, као што је 8-метоксинпорален или ксантотоксин, који има примену у лечењу инфламаторних обољења коже (у третману псоријазе) [42]. Афлатоксини су сличне структуре као и кумарини. То су фунгални метаболити из Aspergillus врста, који настају кварењем хране и испољавају изузетну хепатотоксичност [43].
Слика 4. Структуре једноставних кумарина и кумаринских деривата
4-хидроксикумарин је „молекулски шаблон“ који је послужио за синтезу неколико фармаколошки активних кумаринских аналога. Карактеристични примери су варфарин, синтетичко једињење које се користи као антикоагуланс и родентицид и фенирокумон једињење које поседује антивирусно и анти-ХИВ дејство [44, 45]. Аминокумарински анализи, као што су новобиоцин, хлоробиоцин, кумермицин и симоциклинон, у положају C3 имају амидну везу и могући су антибиотици [46]. Новосинтетисани кумарински дериват, 4-хидроксикумарин-3-карбоксамид представља потенцијални лек за третман инсулин зависног diabetes mellitus-a [47]. Такође, синтетисана је серија нових кумаринских аналога, деривата 4-хидрокси-хинолина, који су 3-карбоксамид функционализовани и испољавају комбиноване антиоксидативне и антиинфламаторне активности [47].

Најчешће проучавани и највише испитани су једноставни кумарини, за које је показано да поседују бројна биолошка и фармаколошка дејства. Тако је потврђено да кумарини смањују отицање ткива настало услед различитих болести и траума и смањењем количине протеина у ткивима, па се користе за редукцију едема и ексудације код инфламаторних процеса [48]. Скопарон (6,7-диметоксикумарин), који је изолован из кинеске биљке Artemisia scoparia, испољава имуносупресивно и хиполипидемијско дејство и опушта крвне судове венске циркулације [49, 50]. Кумарински дериват остол је метаболит изолован из биљке Angelica pubescens, која се користи у кинеској традиционалној медицини за лечење тромбозе, артритиса, лумбага и главобоље [51]. Остол инхибира агрегацију тромбоцита смањењем стварања тромбоксана, чиме је потврђено његово дејство антитромботика. Такође је утврђено да инхибира cAMP и cGMP фосфодиестеразу и редуксије инфлуксе калцијума у зидове крвних судова, чиме се објашњава вазорелаксантно дејство [52]. Слично дејство (антитромботско/вазорелаксантно) испољава и синтетски кумарински дериват, хлорикромен [53].

3.3.1. Кумарини као антиоксиданси

Слободни радикали и реактивне врсте кисеоника индукују оштећења биомолекула, као што су угљени хидрати, протеини, липиди и ДНК [54]. Деградација биомолекула са покретањем оксидативне ланчане реакције изазива убрзано старење и настанак бројних хроничних болести, укључујући неуродегенеративне и кардиоваскуларне болести, туморе
и инфламаторне болести [55]. Нека истраживања указују да антиоксидативна једињења спречавају неуродегенеративне поремећаје неурона и одлажу или превенирају оксидацију наведених биомолекула [56]. Биљке су потенцијални извор природних антиоксиданаса јер садрже фенолна једињења, као што су фенолне кисeline, флвонаиди и танини [57]. До сада су спроведена бројна истраживања антиоксидативних активности изолованих кумаринских деривата како би се окарактерисао антиоксидативни профил ових молекула. Утврђено је да неки природни кумарини утичу на продукцију антиоксидантних врста кисеоника и њихово прикупљање и смањују оксидативна оштећења настала дејством слободних радикала [48]. Више студија је показало да ови природни антиоксиданси испољавају вишеструке фармаколошке активности, укључујући антигеморске, неуропротективне и антиинфламаторне активности које могу бити у вези са њиховим антиоксидантним својствима [58, 59]. Коришћењем комерцијално и лако доступних материјала, уз јед nostавну методологију, могуће је синтетисати нове кумаринске аналоге са потенцијалном антиоксидативном активношћу [60]. На пример, функционализацијом, а потом кондензацијом ацетил салицилне киселине, уз одговарајуће услове реакције могу се синтетисати кумарински деривати (3-етоксикарбонил-4-хидроксикумарин) који имају изражену антиоксидативну активност (слика 5) [47].

![Слика 5. Синтеза 3-етоксикарбонил 4- хидроксикумарина.](imageurl)

(Реагенси: (I) N-хидроксибнзотриазол, N,N- дициклогексилкарбодиамид, (II) NaH, диетил малонат, (III) HCl/MeOH 10%.)

Сви ови подаци илуструју широк спектар фармаколошких и биолошких активности које се могу приписати кумаринима. Евидентно је да једноставни кумарини испољавају различите фармаколошке и биолошке особине, од којих неке могу бити од потенцијалног фармацеутског значаја. Низак степен токичности, широко присуство у исхрани и биљним
препаратим као и релативно јефтино добијање су чињенице које указују на значај даљег испитивања кумаринских деривата и њихове даље примене у фармацији. Може се закључити да је од великог значаја подизање свести о корисним ефектима природних антиоксиданаса и њиховој заштитној улози.

3.4. Оксидативни стрес и пероксидација липида

Пероксидација липида се сматра главним механизmom који је укључен у оксидативна оштећењаћелијских структура која доводе до токсичних ефеката и смртићелија. Пероксидација липида је сложен процес који укључује продукцију слободних радикала са разарањем мембранских липида и ослобађањем разних деградационих производа (алкохоли, алдехиди, кетони, алкани и естарски радикали) [61]. Ћелијске мембране и органеле садрже незасићене масне киселине и стално су изложене разним врстама оштећења, пре свега од стране реактивних кисеоничних и азотних врста. Оксидативни стрес подразумева стање у ком постоји дисбаланс повећане продукције оксиданаса или смањене продукције антиоксиданаса [62]. Пероксидација липида је ланчана реакција иницирана издавањем водоника. Молекулски кисеоник се брзо адира на угљеник радикал настао у овом процесу, при чему настаје пероксирадикал (слика 6).

Слика 6. Почетна фаза липидне пероксидације

Формирање пероксирадикала доводи до производње органских хидропероксида који пропагацијом, могу одузимати водоник из следеће полинезасићене масне киселине. Слободнорадикалска ланчана реакција се може прекинути коњуговањем два слободна радикала или је може прекинути антиоксиданс (на пример, витамин Е) [63].
Пероксидацијом липида долази до смањења флуидности мембране, а производи који настају пероксидацијом инхибирају синтезу протеина, хемотактичких сигнала и активност ензима. Појава липидне пероксидације унутар биолошких мембрана је повезана са променама у физичко-хемијском саставу и изменама биолошких функција липида и протеина. Полинезасићене масне киселине имају улогу у снабдевању ћелије енергијом, улазе у структуру мембране, регулишу њихову флексibilност и пропустљивост, учествују у сигналинм ћелијским путевима и учествују у експресији гена [64]. Самим тим, њиховом пероксидацијом долази до оштећења на готово свим нивоима ћелије. Истраживања су показала да пероксидација липида има битну улогу у патогенези различитих болести, укључујући неуродегенеративне, инфламаторне, инфективне, кардиоваскуларне и болести бубрега [65-68].

3.4.1. Феноли као инхибитори липидне пероксидације

Оксидовани липопротеини мале густине (LDL) имају атерогена својства преко формирања липидних пероксида и њихових продуката. Оксидативно модификофани LDL могу лако фагоцитовати макрофаги при чему долази до формирања пенастих ћелија које су рани маркер развоја атеросклероматозних лезија. Антиоксидативни статус плазме и LDL-а су важне детерминантне у осетљивости LDL-а према пероксидацији [69]. Витамин Е (α-токоферол) је фенолни молекул који се уноси у организам преко хране или дијететских суплементата, а игра значајну улогу у отпорности LDL-а према пероксидацији [70]. Поред α-токоферола и остала биљна једињења, нарочито из група фенола и флавоноида, имају значајну улогу у заштити липидних компоненти од оксидације, па самим тим испољавају и кардиопротективно дејство.

Феноли су антиоксиданси који делују као донори водоника [71]. Они реагују са пероксирадикалима формирајући хидропероксиде прекидајући ланчану реакцију. ROO∙ радикали се неутралишу следећом реакцијом:
Слика 7. Реакција пероксирадикала и фенола

Генерисани фенокси радикал је веома стабилан због способности грађења више мезомерних облика:

Слика 8. Различити стабилни мезомерни облици феноксирадикала

Одређене студије су показале позитиван однос кардиопротекције са повећаним уносом флавоноида и фенола из хране (лук, јабуке, чач, црвено вино) [72-74]. Састојци црвеног вина су посебно интересантни због „Француског парадокса“, којим је показано да је смртност од коронарних болести код особа из јужних делова Француске ниска упркос исхрани са повећаним уносом масти [74]. Са друге стране, у овој популацији се редовно и умерено конзумира црвено вино што указује на повољне ефекте конституената вина
(садржава велику количину полифенола, од 1,0 до 1,8 μg/ml) на крвне судове. Липопротеини мале густине у свом спољашњем омотачу садрже α-токоферол, главни липофилни антиоксидан, док се у унутрашности налазе каротиноиди [75]. Слободни радикали, преко пероксидације полинезасићених масних киселина доводе до формирања липидних пероксида. Фенолни антиоксиданси смањују количину слободних алиокси и перокси радикала редуктујући их до алиоксида и пероксида. Самим тим, имају битну улогу у процесу пероксидације липида. Истраживања су показала да одређени полифенолни конституенти биљака су in vitro снажнији од антиоксиданаса као што су витамини С и Е, што наводи на закључак да могу имати изузетне заштите ефекте in vivo [76]. Самим тим, од великог значаја су даља испитивања антиоксидативних дејстава биљака и њихових конституената, нарочито оних недовољно истражених.

3.5. Секундарни метаболити биљака као извор новых антимикробних агенаса

Инфективне болести су још увек водећи узрок морбидалитета и морtalитета широм света, упркос великим напредкам медицинске технологије и научних сазнања о инфективним агенсима и механизмима настанка инфективних болести [77]. Након открића првог антибиотика, пеницилина 1929. године, дошло је до револуције развоја антибиотика у модерној медицинни. Међутим, у протеклим неколико деценија дошло је до пораста глобалне инциденције резистенције микроорганизама на антимикробне агенсе [78, 79]. Резистенција микроорганизама на агенсе који се тренутно налазе у употреби је све већа па се сматра потреба за континуираним проналаском новых, антимикробних једињења [80]. Природни билјни производи су се вековима користили у лечењу различитих болести, укључујући и инфективне [81-84]. Поред синтетских молекула, природни производи се још увек сматрају главним извором новых и иновативних терапијских агенаса са широким спектром дејства, укључујући и заразне болести [85]. Међу савременим антифунгалним агенсима, који се данас налазе у употреби, око 40% су пореклом из природе [86]. Проналазак новых антибиотика укључује скрининг секундарних билјних метаболита и испољавање њихове фармаколошке активности према патогенима. Природни производи представљају обећавајући извор средстава широког антимикробног дејства која се могу искорисити у дизајну новых антибиотика, као суплементи
Мирослав Соврлић
Докторска дисертација

антибиотицима или као средства за дезинфекцију и спречавање ширења отпорних микробиолошких сојева [87-89].

3.6. ТАКСОНОМИЈА, ДИСТРИБУЦИЈА И ОПИС РОДА DAPHNE

3.6.1. Таксономија и дистрибуција

Таксономија рода Daphne је врло сложена и компликована због постојања великог броја врста и подврста. Род Daphne припада фамилији Thymelaeaceae која обухвата 44 родова са приближно 500 биљних врста [90]. Примарни центар еволуције овог рода била је Кина [91]. Род обухвата 95 врста које су углавном дистрибуиране у Европи, субтропском делу Азије, Северној Африци и Аустралији [92, 93]. Поједине Daphne врсте су ендемичне и јављају се само на одређеним локалитетима. У флори Европе, до сада је евидентирано присуство 17 врста овог рода [94]. Таксономија рода Daphne се огледа у следећој подели:

Таблица 1. Филогенетско стабло рода Daphne

<table>
<thead>
<tr>
<th>Таксономска категорија</th>
<th>Таксон</th>
</tr>
</thead>
<tbody>
<tr>
<td>Царство</td>
<td>Plantae</td>
</tr>
<tr>
<td>Раздео</td>
<td>Magnoliophyta</td>
</tr>
<tr>
<td>Класа</td>
<td>Magnoliopsida</td>
</tr>
<tr>
<td>Ред</td>
<td>Malvales</td>
</tr>
<tr>
<td>Фамилија</td>
<td>Thymelaeaceae</td>
</tr>
<tr>
<td>Род</td>
<td>Daphne</td>
</tr>
</tbody>
</table>

3.6.2. Опис биљних врста рода Daphne

Биљке из рода Daphne су мали жбунови или ниско дрвеће са ретким гранама [91].

Предмет истраживања ове докторске дисертације су три врсте овог рода са стаништем на територији Србије: Daphne blagayana L., Daphne cneorum L. и Daphne alpina L.
3.6.2.1. *Daphne blagayana* L.

Daphne blagayana L. (ременик, ликовац, опутник, јеремичак) је први пут описана од стране словеначког ботаничара Хенрик Фреуер-а 1837. године [95]. То је зимзелени вишегодишњи полегли грм, жутобелих миришљавих цветова, висине до 30 центиметара (слика 9) [96].

![Daphne blagayana](image)

Слика 9. Daphne blagayana L.

D. blagayana је распрострањена у западним деловима Србије и просторима бивших југословенских република, простору Албаније, Бугарске, Румуније, Грчке и Италије [97-99].

3.6.2.2. *Daphne cneorum* L.

Daphne cneorum L. (црвени усколисни ликовац, црвени јеремичак) је зимзелени грм висине 10–40 центиметара, дугих, танких и глатких грана. Листови су јајасти, наизменични, седећи, кожасти и крути, са горње стране тамнозелени, глатки и сјајни, док
су са доње стране зеленкастоплави. Цветови су ружичасто-беле боје и пријатног мириса (слика 10).

Слика 10. *Daphne cneorum* L.

Ова билјка је распрострањена у западној, централној и источној Европи, Средоземљу, Малој Азији, а у нашој земљи се може наћи на планинама Ртањ и Сувој планини као и региону Рашке [100, 101].

3.6.2.3. *Daphne alpina* L.

Daphne alpina L. је усправан, листопадни жбун висине од 20 до 50 центиметара. Цветови су зеленкасто бели, груписани у цвасти (слика 11). Јавља се у пределу јужне и централне Европе. На нашим просторима се може наћи на високим планинама централне и југозападне Србије [101, 102].
3.7. БИЉНЕ ВРСТЕ РОДА DAPHNE: ФАРМАКОЛОШКИ СКРИНИНГ И УПОТРЕБА У ТРАДИЦИОНАЛНОЈ МЕДИЦИНИ

Биљне врсте рода Daphne налазе примену у традиционалним методама лечења, а нарочито су заступљене у Кинеској традиционалној медицини као и традиционалној медицини тропског дела Африке [103]. Такође, спроведено је доста истраживања која указују на биопотенцијал ових врста као извор фармаколошки активних јединиња и која указују на велики значај овог рода због испољавања медицинских дејстава и биолошких активности. До сада је истражено близу половине биљака овог рода али и даље постоји велики потенцијал истраживања у циљу проналасења нових природних биоактивних молекула [104].

Daphne oleoides. Корен D. oleoides се користи као пургатив, а кора и листови у третману оштећења коже и чирева. Инфуз листова ове биљке се користи у лечењу гонореје и абсцеса [105]. Надземни делови D. oleoides се користе у турској традиционалној
мици за лечење реуматских болова, љумбага и повишени температуре. Екстракти D. oleoides показују антиинфламаторна и антитуморска дејства [106]. Истраживањем Yeşilada и сар. (2001) показано је да активне компоненте изоловане из ове биљке, генквадафин и 1,2-дехидродафнетоксин су примарне биоактивне компоненте које снажно инхибирају цитокине од којих зависи активност макрофага [107].

Daphne genkwa. Цветови D. genkwa се користе као диуретик, антитусик, експекторанс, антиканцерогено и антиинфламаторно средство у Кинеској и Кореанској традиционалној медицини [108]. У кинеској традиционалној медицини, цветови D. genkwa се користи за ублажавање симптома реуме. Новија истраживања су показала да цветови D. genkwa, који углавном садрже флавоноидна јединења, испољавају антиинфламаторну, антитусикову и имуномодулаторну активност [109]. Цветови D. genkwa су богати флавоноидима. Флавоноидна фракција изолована из цветова ове биљке, која чине лутеолин, апигенин, хидроксигенкванин и генкванин, показује значајне терапијске ефекте код индукуваних артритиса на мишевима, без очигледних нежељених ефеката. Овај антиреуматоидни ефекат се може приписати антиоксидантивној и имуномодулаторној активности као и модулацији вискозитета крви. Овакав ефекат ове групе флавоноида може наћи потенцијалну терапијску примену код пацијаната са реуматоидним артритисом [110]. Метанолни екстракт цветних пулољака D. genkwa показује инхибиторни ефекат на продукцију азот моноксида (NO) који има битну улогу у неуротрансмисији, регулацији крвног притиска и одбрамбених механизама ћелије. Међутим, његова неконтролисана продукција доводи до настанка инфламаторних болести. Смањењем продукције NO се објашњава антиинфламаторно дејство метанолског екстракта цветних пулољака D. genkwa, односно конституената које садржи [111].

Daphne odora. У традиционалној кинеској медицини, корен биљке D. odora је коришћен за лечење болова у стомаку, модрица и уједа змија отровница, док су листови коришћени за лечење абсцesa и неуралгија [112].

Daphne acutiloba. Корен и кора биљке D. acutiloba се у кинеској традиционалној медицини, под именом „jin yao dai“ користе за лечење модрица и скрофуле (лимфаденитис цервикалних чворова повезан са туберкулозом) [113].
D. feddei, која садржи полифункционале дитерпене дафнан типа, поред иритирајућег дејства на кожу, показује и корисна дејства, као што су имуностимулативно и антинеопластично [114].

Daphne gnidium. У народној медицини, инфуз листова биљке D. gnidium се користи као хипогликемични препарат и за лечење болести коже. Ова биљка се традиционално користи као средство за бојење у текстилној индустрији. Међутим, употреба ове биљке се сматра опасном, због испољавања токсичности. Њена употреба може да доведе до главобоље, бледила, дрхтавице, отока уста и усана, конвулзије па и смрти [115]. Анализом метанолског екстраката гранчица D. g nidium, показано је да екстракт испољава веома добру антимикробну активност, нарочито према бактеријама Bacillus lentus и Escherichia coli, док екстракт није показао противновирусну активност. Дафнетин, генкванин и 2,5,7,4'-тетрахидрокси флavanол су јединиња из екстраката која су показала најјачу активност [116].

Daphne retusa. Ова биљка је део “Zhu Shi Ma” кинеске традиционалне медицине и користи се за лечење ревматизма, смањивање отока и бола код пријапизма, док њен етанолски екстракт показује аптиинфламаторну и антианалгетску активност. Резултати испитивања токсичности етанолских екстракта D. retusa на мишевима су показали ниску токсичност што обезбеђује фармаколошку оправданост традиционалне употребе ове биљке у третману инфламаторних и болних стања [117].

Daphne mucronata. Користи се у традиционалној медицини за лечење тумора и обољења коже [118]. Водено-етанолски екстракт ове биљке показује цитотоксичну активност, посебно на ћелијским линијама рака дојке. Екстракт такође показује и антинеопластичну активност нарочито на U937 ћелијским линијама. Етанолски екстракти D. mucronata показују антимикробну активност према грам позитивним бактеријама (E. coli и S. aureus) [119].

Daphne pontica. Екстракти различитих делова биљке D. pontica испољавају антиинфламаторну и антиноцицептивну активност [120].

Водено алкохолни екстракт D. mezereum је показао антинеопластичну активност на P-388 лимфоцитним ћелијама мишева. Активно јединење, мезереин, које је изоловано из
ове биљке, показало је значајан инхибиторни ефекат против P-388 и L-1210 типа ћелија код мишева оболелих од леукемије у дози од 50 µg [121, 122].

D. giraldae испољава фармаколошко дејство хемостатика [123].

Daphne altaica. Користи се у Кинеској традиционалној медицини користи у лечењу канцера једњака и желуца, трахеитиса, грознице, упале грла, уједа змије, а користи се и као антитусик и диафоретик [124]. Екстракти коре *D. altaica* испољавају антипролиферативни ефекат па се могу сматрати потенцијалним извором антikanцерогених супстанци [125].

D. papyracea, односно флавоноидна једињења која се налазе у њој, испољавају седативни и хипотензивни ефекат [126]. Њени етанолски екстракти показују јако цитотоксично дејство [127].

Daphne acutiloba се у традиционалној медицини користи за лечење рана и модрица [113].

Метанолски екстракт *D. acuminata* испољава хипотензивно и кардиотоксично дејство [128].

Екстракти *D. papyracea*, односно флавоноиди као главни конституенти, испољавају седативни и хипотензивни ефекат [129]. Етанолски екстракти ове биљке су показали значајну антитуморску активост [127].

3.7.1. Токсични ефекти врста рода *Daphne*

Роједине врсте из рода *Daphne*, као што су *D. laureola, D.mezerum* и *D. gnidium* су изузетно отровне, уколико се унесу *per os* [130]. Токсична једињења се налазе у свим деловима биљке, кори, стаблу, листовима, а нарочито у бобицама. Симптоми тровања приликом интерног уношења су бројни а укључују: главобољу, повраћање, пролив, дрхтавицу а у тежим случајевима тровања може доћи до коме и смрти. (131) Нарочито су опасна тровања деце, уколико дође до ингестије свежих бобица ових биљака. Отровност ових биљака потиче од једињења комплексне структуре- мезерена и дифноксина [132, 133] (слика 12).
Слика 12. Структуре токсичних метаболита у Daphne врстама

Специфични антидот за лечење тровања овим биљкама не постоји, већ се користе опште методе детоксикације.

3.8. ХЕМИЈСКИ КОНСТИТУЕНТИ ВРСТА РОДА DAPHNE И ЊИХОВЕ БИОЛОШКЕ И ФАРМАКОЛОШКЕ АКТИВНОСТИ

Истраживања последњих година указују на велики потенцијални фармаколошки значај појединих врста из рода Daphne [106, 108, 110, 115, 120]. Досадашњим истраживањима је утврђено присуство молекула и деривата који припадају различитим класама секундарних метаболита. Присутни су кумарини и кумарински деривати, различита фенолна једињења, флавоноиди и флавоноидни деривати, терпени (сесквитетерпени, дитерпени и тритерпени), лигнани и лигнини. Значај и интересовање за биљне врсте из рода Daphne је све већи због информација, нарочито добијених у новијим истраживањима, које указују на бројна корисна медицинска дејства ових биљака која могу бити од потенцијалног клиничког значаја.

3.8.1. Кумарини

Један од првих изолованих метаболита (тридесете године ХХ века) је кумарински хетерозид дафнин, чије је присуство потврђено у неколико врста рода Daphne [134]. Од тада је откривено присуство већег броја кумаринских деривата у овим врстама, који се налазе како у облику агликона, тако и у облику хетерозидно везаних метаболита. Код
врста рода *Daphne* је до сада откривено присуство око 50 кумаринских метаболита. Присутни су једноставни кумарини као и димерни и тримерни кумарински деривати. Од једноставних кумарина у *Daphne* врстама јављају се: дафнетин и његови гликозидно везани облици (дафнетин-8-β-глукозид, дафнин и дафнезид), умбелиферон и ацетилумбелиферон [116, 134-136]. Примери димерних (*bis*) кумарина присутних у овим биљкама су: рутаренсин, деметилдафноретин-7-O-глукозид, дафноретин (тимелол) и дафнеретусин А [104, 109]. Дафноретин показује добру антитуморску активност.

Испољава ефекат на заустављање ћелијског циклуса људског остеосаркома у Г2 фази и покреће апоптозу преко каспаза-3 зависног пута [137]. Дафнеретусин Б (изолован из *D. retusa*) и триумбелин су тримерни кумарински метаболити присутни код врста *D.mezerum* и *D.oleoides*. Дафнеретусини А и Б показују антиоксидативно дејство [104]. Структуре најчешће присутих једињења кумаринске природе у *Daphne* врстама приказане на слици 13.
Слика 13. Кумарини и кумарински деривати присутни у Daphne врстама
3.8.2. Флавоноиди

Досадашњим истраживањима је потврђено присуство флавоноида и флавоноидних деривата у различитим деловима биљака из рода *Daphne*. Присутни су агликони једноставних флавоноида, флавоноидни хетерозиди, изофлавоноиди као и дафнодорини и њима сличи спиробифлавоноиди. Од једноставних флавоноида идентификована су следећа јединиња: апигенин и његови хетерозиди (апигенин-7-O-глукозид и апигенин-7-O-глукуронид), генкванин и хидроксигенкванин, ориентин и изоориентин, лутеолин 7-O-глукозид (цинарозид), кверцетин-3-O-глукозид и генкванин-3-O-β-D–примерозид. Од изофлавоноидних метаболита у *Daphne* врстама јавља се 5,7,4'-трихидрокси-изофлаванон-2-ол [109, 110, 112, 116, 138]. Њихове структуре су приказане на слици 14.
Генкванин (R = CH₃)
Апигенин (R = OH)
Апигенин-7-O-глукозид (R = глюкоза)
Апигенин-7-O-глукuronид (R = глукуронид)
Хидроксигенкванин (R = CH₃, R₁=H)
Ориентин (Лутеолин 8-глукозид) (R = H, R₁=глюкоза)
Цинарозид (Лутеолин 7-O-глукозид) (R = глюкоза, R₁=H)
Изоориентин
Кверцетин-3-O-глукозид
Генкванин-3-O-β-D-примверозид
5,7,4’-трихидрокси-изофлаванон-2-ол
Трилиозид

Слика 14. Најчешће заступљена флavoноидна и изофлавоноидна јединења у Daphne врстама

3.8.3. Бифлавоноиди (спиробифлавоноиди)

Дафнодорини и њима слични бифлавоноиди, генкваноли и дафноригини, су специфични секундарни метаболити присутни у фамилији Thymelaeaceae који садрже 2,3-функционализовану бензофуранску групу (слика 15). Дафнодорин А је први пут изолован из биљке D. odora и утврђено је да испољава бројну биолошку активност укључујући инхибицију α-глукозидазе, K+-АТР инхибицију, анти-ХИВ активност, антифунгалну и инсектицидну активност, 12-липооксигеназу и циклооксигеназа инхибиторну активност и
антитуморску активност [139, 140]. Поред дафнодорина А из екстраката биљке D. odora изоловани су и дафнодорини Б, Ц, Е, Ф, Г, Х, И, Ј, К, Л [141]. Метанолски екстрак D. acutiloba садржи дафнодорине М и Н [113]. Спиробифлавоноиди, генкванол Б и Ц као и јуанхуанин (3'-хидроксигенкванин-5-O-глукозид су изоловани из D. genkwa и испољавају цитотоксично дејство [142].

Слика 15. Бифлавоноидни секундарни метаболити у у Daphne врстама
3.8.4. Терпени

Поред flavonoида и кумарина, терпенски секундарни метаболити се врло често јављају као конституенти различитих делова биљака из рода *Daphne*. Моно и секвти терпенска једињења најчешће улазе у састав етеричних уља добијених из цветова ових врста дајући им карактеристичан мирис [143]. Као терпенски конституенти екстраката добијених из осталих делова ових биљака јављају дитерпени и тритерпени.

3.8.5. Сесквитерпеноиди

Дафнаураноли (А-Ц) су биоактивни трициклични сесквитерпени који су 2014. године изоловани из *D. aurantiaca* (слика 16). За сада је испитана њихова инсектицидна активност, која је на значајном нивоу, па могу наћи примену у заштити биљака од штетних инсеката као нетоксична, безбедна и биоразградива алтернатива синтетским пестицидима [144].

![Слика 16. Структуре дафнауранола](#)

3.8.6. Дитерпени дафнанског типа

Дитерпенски естри дафнан типа су првенствено изоловани из биљака које припадају фамилији *Thymeleaceae* а само неколико њих је откривено у биљкама из фамилије *Euphorbiaceae*. Представљају главни тип познатих биљних ортоестара и испољавају бројне биолошке активности: цитотоксичну, неуротрофну, контрацептивну, инсектицидну, антихипогликемичну и антиХИВ [145-147]. У ову групу молекула спадају
и акутилобини (укупно 12 откривених), који се налазе у неким Daphne врстама, као што је D. acutiloba. Акутилобини испољавају значајну антиХИВ активност, при чему најјачу активност испољава акутилобин Г. Такође, испољавају и значајну цитотоксичну активност испитану на 5 хуманих туморских ћелијских линија (HL-60, SMMC-7721, A-549, MCF-7 и SW480) [148]. Јуанхуадин (дафнански дитерпен) је бели аморфни прашак изолован из цветова D. genkwa [142]. Показује антитуморску активност тако што инхибира раст ћелија рака плућа и може наћи потенцијалну употребу као хемотерапеутик [149]. Генквадафнин је дафнански дитерпенски естар који је изолован из D. genkwa. Испољава антинеопластично дејство према линијама леукемијских ћелија и индикује апоптозу туморских ћелија коже [150]. На слици 17. приказане су структуре дитерпенских естара дафнанског типа који се најчешће javљају у врстама рода Daphne.
Мирослав Соврлић
Докторска дисертација

Слика 17. Структуре дитерпена дафнанског типа
3.8.7. Тритерпени

Рентацклични тритерпеноиди, тараксерол, тараксерон и таракселол ацетат су изоловани из *D. papiracea* [127]. Поред ових јединења, код неких врста из рода *Daphne* потврђено је присуство и следећих тритерпенских: урсолна киселина, \(\beta \)-вискол (лупел), као и \(\alpha \) и \(\beta \) амирин [126,]. Њихове структуре приказане су на слици 18.

Слика 18. Тритерпенски секундарни метаболити присутни у *Daphne* врстама
3.8.8. Стероидни молекули у Daphne врстама

Од молекула стероидне природне у Daphne врстама (слика 19) најчеше се срећу биљни фитостерoli и то: β-ситостерол (D. acuminata, D. giraldii) и β-ситостерол-β-D-глукозид (D. gnidioides и D. papiracea) [126].

Слика 19. Стероидна јединења присутна код врста рида Daphne

3.8.9. Лигнанска јединења

Досадашњим испитивањем хемијског састава биљака рода Daphne показано је и присуство јединења лигнанске структуре. Од лигнана су присутни диhidроксисезамин, сезамин, ларицирезинол, пинорезинол и сирингарезинол (слика 20). Ова јединења су идентификована у више врста овог рода (D. mezerum, D. odor, D. oleoides и D. tangutica) [151-153].

Слика 20. Структуре неких лигана који се могу наћи у Daphne врстама
Сви ови подаци илуструју широк спектар једињења различитих група секундарних метаболитата, врло специфичних структура, која су присутни у проучаваним Daphne врстама. Садржај различитих класа секундарних метаболитата које испољавају специфична дејства указује на значај проучавања до сада недовољно истражених врста овог рода. Проучавањем три врсте које су обухваћене овом докторском дисертацијом ће се добити интересантни и веома значајни податке подаци о њиховом хемијском саставу и испољавању биолошких активности.
4. МАТЕРИЈАЛ И МЕТОДЕ
4.1. Прикупљање и припрема биљног материјала за екстракцију

4.2. Хемикалије и реагенси

1,1-дифенил-2-пикрилхидразил радикал (DPPH˙), натријумова со 5,6-дифенил-3-(2-пиридил)-1,2,4-триазин-4,4-дисулфонске киселине (Ferrozine), Folin-Ciocalteau’s реагенс, бутиловани хидрокситолуен (BHT), ресазурин, гална киселина, рутин и α-токоферол су произведи компаније Sigma-Aldrich GmbH, Sternheim, Germany. Растварачи коришћени у високоефикасној техно хроматографској анализи су били HPLC чистоће (gradient grade). Стандарди (дафнетин, умбелиферон и 4-хидроксибензоева киселина) коришћени у експериментима прибављени су из компаније Merck, Darmstadt, Немачка. Сви остали реагенси и хемикалије употребљене у експерименталном раду били су аналитичке чистоће, пореклом од различитих произвођача.

4.3. Добијање екстраката

На ваздуху осушене гранчице и листови биљака су уситњени до грубог прашка (2–6 mm), помоћу млина, а потом одвојено екстраховани (4 часа) хлороформом и метанолом. Екстракција је извршена коришћењем апаратуре по Soxhlet-u. Након екстракције, добијени течни екстракти су профилтрирани преко филтер папира (Whatman, No.1). Упаравање раствараца коришћених за екстракцију вршено је под сниженим притиском помоћу ротационог вакуум упаривача. На тај начин су добијени суви екстракти, који су чувани су у тамним бочицама и коришћени за даља испитивања.
4.4.ИСРИТИВАЊЕ ХЕМИЈСКОГ САСТАВА ЕКСТРАКАТА

4.4.1. UV/Vis спектрофотометријска анализа екстраката

За одређивање укупног фенолног и флавоноидног садржаја у испитиваним екстрактима коришћена је UV/Vis спектрофотометрија. Све спектрофотометријске анализе су извршене на спектрофотометру MA9523-Spekol 211 (Iskra, Horjul, Slovenia).

4.4.2. Одређивање укупног фенолног садржаја

Укупни фенолни садржај у испитиваним екстрактима одређен је спектрофотометријском методом, употребом Folin-Ciocalteu реагенса [154]. Folin-Ciocalteu реагенс садржи смешу фосфоволфрамове и фосфомолибденске кисeline и представља оксидационо средство. При реакцији, полифенолна једињења се оксидују до феноксидних анјона а сам реагенс редукује до волфрам-оксида и молибден оксида који је плаве боје [155]:

\[
\text{Na}_2\text{WO}_4/\text{Na}_2\text{MoO}_4 + \text{Фенол} \rightarrow (\text{Фенол-MoW}_{11}\text{O}_{40})^{4+}
\]
\[
\text{Mo(VI) (жута боја) + e}^- \rightarrow \text{Mo (V) (плава боја)}
\]

Интензитет плаве боје, која потиче од редуковане форме реагенса је пропорционалан количини фенолних једињења у узорку и одређује се спектрофотометријски, мерењем апсорбанце на \(\lambda=760\) nm.

Раствори и реагенси

Раствор Na\(_2\)CO\(_3\) (20%);

Folin-Ciocalteu реагенс;

Стандардни раствор галне киселине (гална киселина се раствори у метанолу а потом разблажи дестилованом водом до финалне концентрације 0,05 mg/cm\(^3\)).

Роступак

1 g екстракта се раствори у 10 ml дестиловане воде и профилтрира. Филтрат (0,5 ml) се пренесе у нормални суд и дода се 2,5 ml Folin-Ciocalteu реагенса (претходно
десетоструко разблажен). Након мућкања (5 минута) у смешу се додаје 2 ml свеже припремљеног раствора Na₂CO₃ и инкубира на собној температури 2 часа. Након инкубације, очитава се апсорбанца на 765 nm, у односу на дестиловану воду, која се користи као слепа проба. Сва мерења су поновљена три пута.

Стандардна крива галне киселине, конструисана на основу серије разблажења стандардног раствора галне киселине (0-1000 μmol/L) је коришћена за одређивање садржаја укупних фенола. Укупни фенолни садржај је изражен у mg еквивалената галне киселине по g сувог екстракта ± стандардна девијација три мерења (mg GA/g±SD).

4.4.3. Одређивање укупног флавоноидног садржаја

Флавоноиди имају особину да са металима дају одговарајуће металне комплексе на чему се заснива одређивање флавоноида методом по Markham-u [156]. Укупни садржај флавоноида је одређен спектрофотометријски преко реакције флавоноида са AlCl₃ при чему се гради комплекс флавоноида са алуминијумом:

![Флавоноидни комплекс](image.png)

Слика 21. Настајање обојеног комплекса рутина и Al³⁺ јона

Интензитет обојеног комплекса је пропорционалан количини флавоноидних едињења у узорку и одређује се спектрофотометријски, мерењем апсорбанце на λ=510 nm.

Раствори и реагенси

Раствор NaOH у дестиливаној води (1 mol/dm³);

Раствор AlCl₃ у метанолу (2%);
Стандардни раствор рутина (рутин се раствори у етанолу а потом разблажи дестилованом водом до финалне концентрације 0,05 mg/cm³).

Поступак

1 g екстракта се раствори у 10 ml метанола и профилтрира. Запремина од 0,5 ml раствора екстракта се помеша са 0,5 ml 2% раствора AlCl₃. Након 60 минута инкубације на собној температури, апсорбанце узорака су мерење на 415 nm на спектрофотометру у односу на слепу пробу. Сва мерења су поновљена три пута.

Стандардна крива рутина, конструисана на основу серије разблажења стандардног раствора рутина (0-1000 μmol/L) је коришћена за одређивање садржаја укупних флавоноида. Укупни флавоноидни садржај је изражен у mg еквивалената рутина по g сувог екстракта ± стандардна девијација три мерења (mg RU/g±SD).

4.4.4. HPLC-UV анализа екстраката

Високоефикасна течна хроматографска анализа (енг. HPLC) са UV детекцијом примењена је за раздвајање и идентификацију појединих конституената екстраката. Анализе су вршене на апарату Agilent 1200 Series коришћењем C18 колоне (ZORBAX Eclipse XDB-C18; 25cm×4.6mm; 5 μm). Детекција раздвојених пикова извршено се применом детектора са серијом диода (Diode Array Detector, DAD) на 280, 330 и 350 nm, а апсорпциони спектри компонената су снимљени у опсегу од 200 до 400 nm.

Растворени узорци екстараката су профилтрирани кроз филтере са порама величине 0,45 μm. Хроматографско раздвајање извршено је употребом система раствараца ацетонитрил-вода–фосфорна киселина (90:10:0,1, v/v/v). Брзина протока мобилне фазе је износила 1 ml/min. У колону је аутоматски, помоћу аутосемплера инжектовано 10 μl раствора узорка. Колона је термостатирана на температури од 30 °C.

Идентификација појединих конституената екстраката је извршена компарацијом ретенционих времен и UV спектара конституената са стандардима (λ=200–400nm).
4.5. ИСРИТИВАЊЕ АНТИОКСИДАТИВНЕ АКТИВНОСТИ ЕКСТРАКАТА

Антиоксидативни потенцијал метанолскихих и хлороформских екстраката границица и листова биљака D. blagayana, D. cneorum и D. alpina процењен је преко више in vitro модела.

4.5.1. Одређивање укупног антиоксидативног капацитета

Укупни антиоксидативни капацитет испитиваних екстраката одређен је спектрофотометријским фосфомолибденском методом [157]. Метода се заснива на редукцији молибден-фосфата (VI) до зеленог молибден-фосфата (V) у киселој средини од стране антиоксиданса. Као стандард коришћена је аскорбинска киселина, а растварак (метанол) без узорка је коришћен као слепа проба. Укупан антиоксидативни капацитет изражен је кроз милиграме аскорбинске киселине по граму сувог екстракта (mg AA/g).

Поступак

Запремина од 0,3 ml узорка екстракта (1 mg/ml) помеша се са 3 ml раствора реагенса (0,6 M сумпорна киселина, 28 mM натријум фосфата и 4 mM амонијум молибдата). Добијене смеше инкубирају се на 95 °C у току 90 минута. Након хлађења узорака до собне температуре, мери се апсорбанца на 695 nm на спектрофотометру у односу на слепу пробу. Све анализе су поновљене три пута а резултати приказани као средње вредности ± стандардна девијација три мерења.

4.5.2. Одређивање DPPH „скевинџер” активности

1,1-дифенил-2-пикрилхидразил (DPPH•) је стабилан, синтетски слободни радикал који се често користи за процену способности једињења да „хватају“ слободне радикале (free radical scavengers) односно да делују као донори протона и електрона [158]. Способност биомолекула да DPPH• радикал преведе у неутрални облик (DPPH-) је прелиминарни показатељ испољавања антиоксидативне активности испитиваних молекула. У реакцији са редукционим средствима (антиоксидансима) долази до трансформације љубичасто обојеног, азот-центрираног DPPH• радикала у редуковани, жуто обојени облик DPPH-Н.
Слика 22. Реакција DPPH• радикала и антиоксиданаса

Поступак

DPPH• (1,1-дифенил-2-пикрилхидразил радикал) растворен је у метанолу у концентрацији 80 μg/ml. Направљене су серије двоструких разблажења узорака од основног раствора концентрације 1 mg/ml. Раствори узорака и DPPH• су затим помешани у једнаком односу (по 2 ml од сваког) и таква смеша остављена је 30 минута на собној температуре, у мраку, након чега је мерена апсорбанца на 517 nm. Аскорбинска киселина и BHT су коришћени као референтни стандарди. Припремљена је и контрола која, уместо раствора узорка, садржи 2 ml метанола.

Израчунавање

DPPH „скевинцер” активност израчунате је по једначини:

\[
\% \text{ инхибиције} = \frac{A_k - A_u}{A_k} \times 100
\]

при чему су:

Ak – концентрација контроле;
Aу-концентрација узорка.

Вредност IC_{50}, која се дефинише као концентрација испитиваног узорка која редукује концентрацију DPPH радикала за 50%, изражена као μg/mL екстракта, израчуната је преко симгоидне „dose-response” криве поступком нелинеарне регресије, коришћењем софтвера за анализу података Origine 8. Све анализе су поновљене три пута а резултати приказани као средње вредности ± стандардна девијација три мерења.

46
4.5.3. Метода инхибиције липидне пероксидације

Метода инхибиције липидне пероксидације се заснива на гвожђе катализованој реакцији разлагања хидропероксида, при којој се Fe$^{2+}$ оксидује до Fe$^{3+}$, чија се концентрација може одредити мерењем апсорбанце на 500 nm уз додatak NH$_4$SCN [159]. Направи се серија двоструких разблажења узорка. У 0,5 ml узорка се дода 2,5 ml емулзије линолеинске киселине (0,2804 g линолеинске киселине и 0,2804 g Tween 40 у 50 ml фосфатног пуфера, pH=7,0) и смеша инкубира у мраку на температуре од 50 °C у току 72 часа. Након тога се 0,1 ml смеше помеша са 4,7 ml етанола (75%), 0,1 ml NH$_4$SCN (30%) и 0,1 ml FeSO$_4$ (20mM), меша 3 минута и мери апсорбанца на 500 nm (у односу на слепу пробу која уместо узорака и емулзије линолеинске киселине садржи исте запремине етанола). Инхибиција липидне пероксидације се израчунава према једначини:

$$\text{% инхибиције} = \frac{A_k - A_u}{A_k} \times 100$$

при чему је A_k апсорбанца контроле, која се припрема као и узорци, само што се уместо испитиваног раствора додаје иста запремина етанола, а A_u представља апсорбанцу узорка.
Вредност IC$_{50}$, која се дефинише као концентрација испитиваног узорка која липидну пероксидацију инхибира за 50%, изражена као μg/mL екстракта, израчуната је преко сигмоидне „dose-response“ криве поступком нелинеарне регресије, коришћењем софтвера за анализу података Origine 8. Сви резултати су дати као средња вредност три мерења± стандардна девијација.

4.5.4. Fe$^{2+}$ хелатациона активност

Одређивање хелатационе активности се заснива на способности антиоксиданта да врши инхибицију стварања комплекса Fe$^{2+}$-ферозин [160].

Fe$^{2+}$ + ферозин → Fe$^{2+}$-ферозин

(апсорбује на 562 nm)
Слика 23. Стварање Fe$^{2+}$-ферозин комплекса

Нижа апсорбанца на 562 nm одговара већој хелатационој активности екстракта.

Поступак

Припреми се серија раствора екстраката, стандарда аскорбинске киселине и бутил хидроксилтолуена концентрације 1000 μg/mL у метанолу. У 1 mL испитваног узорка додаје се 1 mL 0,125 mM раствора FeSO$_4$ и 1 mL 0,3125 mM раствора ферозина. Смеша се остави да одстоји 10 минута након чега се врши мерење апсорбанце узорка на 562 nm (у односу на метанол као бланко пробу, тј. стандард). Способност испитиваних етанолских екстраката да се у наведеним експерименталним условима хелатизују рачуна се према једначини:

$$IC(\%) = \left(\frac{A_{бланко раствор} - A_{узорак}}{A_{бланко раствор}} \right) \times 100$$

На основу добијених вредности за четири концентрације, за сваки испитани узорак се конструише зависност A_{562} nm од концентрације. IC$_{50}$ вредност је дефинисана као масена концентрација која одговара хелатационој активности од 50%, а добијена је рачунски из једначине линеарне регресије.
4.5.5. Одређивање способности неутралисања OH⁻ радикала

Да би се одредила способност екстраката за неутралисање генерисаних OH⁻ радикала примене се метода описана од стране Hinneburg-a са одређеним модификацијама [161]. OH⁻ радикали настају у реакцији Fe^{2+} јона са H₂O₂:

\[
Fe^{2+} + H₂O₂ \rightarrow OH⁻ + OH⁻ + Fe^{3+}
\]

Генерисани OH⁻ радикали покрећу разградњу 2-дезоксирибозе до крајњих производа реакције од којих је најважнији малонилдиалдехид (MDA):

Слика 24. Деградација 2-дезоксирибозе и настајање малонилдиалдехида (MDA).

MDA се потом одређује одређује TBA (тиобарбитурна киселина) тестом. TBA тест заснован је на спектрофотометријском одређивању ружичасто обојеног комплекса који настаје након реакције малонилдиалдехида са два молекула TBA.
Слика 25. Грађење обојеног комплекса у реакцији MDA са два молекула TBA

Поступак

Направи се серија двоструких разблатења екстраката. У 100 μl узорка дода се 500 μl раствора деоксирибозе, 200 μl смеше FeCl₃ и EDTA (1:1 v/v), 100 μl раствора H₂O₂, и 100 μl аскорбинске киселине. Ова смеша се инкубира 30 минута на температури од 50 °C уз повремено мешање. Након тога се смеши дода 1 ml TCA и 1 ml TBA, при чему се поново инкубира 30 минута на температури од 50 °C. Степен оксидације деоксирибозе се одређује мерњем апсорбанце узорака помоћу спектрофотометра на 532 nm (у односу на дестилиовану воду као контролу). Проценат инхибиције се израчунава према једначини:

\[(\% \text{ инхибиције}) = \frac{A_k - A_u}{A_k} \times 100\]

при чему су:
Ак – концентрација контроле;
Ау-концентрација узорка.

Спектрофотометријско мерење се врши на 532 nm. Вредности процента инхибиције израчуната је из апсорбанце контроле и апсорбанце узорака, при чему контрола садржи све реагенсе реакције сем узорка или стандардне супстанце. Из једначине линеарне регресије су израчунате IC₅₀ вредности као средње вредности три мерења (µg/ml).
4.6. ИСРИТИВАЊЕ АНТИМИКРОБНЕ АКТИВНОСТИ ЕКСТРАКАТА

4.6.1. Бактеријски и гљивични сојеви

Антимикробна активност екстраката истраживаних врста испитана је у in vitro условима на 6 бактеријских и 2 гљивична соја. Сојеви на којима је испитивана активност припадају колекцији American Type Culture Collection Maryland (ATCC). Листа сојева на којима су испитане антибактеријске и антифунгалне активности приказана је у Табели 2.

Табела 2. Микробиолошки сојеви коришћени у испитавању антимикробне активности

<table>
<thead>
<tr>
<th>Ознака</th>
<th>Микроорганизам</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCC 25923</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>ATCC 13883</td>
<td>Klebsiella pneumoniae</td>
</tr>
<tr>
<td>ATCC 25922</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ATCC 13315</td>
<td>Proteus vulgaris</td>
</tr>
<tr>
<td>ATCC 14153</td>
<td>Proteus mirabilis</td>
</tr>
<tr>
<td>ATCC 6633</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>ATCC 10231</td>
<td>Candida albicans</td>
</tr>
<tr>
<td>ATCC 16404</td>
<td>Aspergillus niger</td>
</tr>
</tbody>
</table>

Култивација гљивица вршена је на кромпир-глукозном агру током 7 дана на температури од 20 °C под наизменично светлим и тамним условима. Након 7 дана извршена је рекултивација на новом кромпир-глукозном агру током наредних 7 дана. Бактерије су култивисане на агру током 7 дана на собној температури од 25 °C под наизменично светлим и тамним условима. Рекултивација бактеријских сојева вршена је на новом агар субстрату током 5 дана. Поступак култивације је извођен 4 пута док није добијена чиста култура. Идентификација тестираних микроорганизама урађена је у Департману за микробиологију, Института Торлак, Београд, Србија.

4.6.2. Микродилуциона метода

Антимикробне активности испитиване су микродилуционом методом при чему су одређиване минимальне инхибиторне концентрације (MIC) екстраката [162]. Анализе су вршене у микротитар плочама са 96 удубљења уз потребу ресазурнина као индикатора (слика 26).
Слика 26. Микротитар плоча за одређивање минималних инхибиторних концентрација узорака

Ресазурин је оксидо-редукциони индикатор који мења боју редуковањем до ресоруфина помоћу оксидоредуктаза унутар виталних ћелија (слика 27).

Слика 27. Редукција ресазурина до ресоруфина

Најмања концентрација која доводи до промене боје узета као MIC вредност.

Поступак

У први ред микротитар плоче пипетирано је 100 µl раствора екстраката растворених у метанолу (200 µl/ml) и цирсимарин (растворен у 10 % диметил сулфоксиду, 2 mg/ml). У остала удубљења плоче додато је по 50 µl Müller–Hinton односно Sabouraud декстрозног бујона (са додатком Tween 80 до финалне концентрације од 0.5% (v/v) за анализу екстраката). Запремина од 50 µl из првог реда удубљења пипетирана је у други
ред за сваку микротитарску линију, а затим је 50 µl разблажења скаларно пренешено из другог до дванаестог реда удубљења. У свако удубљење је додато по 10 µl индикатора (раствор ресазурина припремљен растварањем 270 mg таблета у 40 ml стерилне дестилиноване воде) и 30 µl хранљивог бујона. На крају, у свако удубљење је додато 10 µl суспензије бактерија (10⁶ CFU/ml) односно суспензија спора гљивица (3×10⁴ CFU/ml). Плоче су потом умотане у фолију, како би се спречила дехидратација и инкубиране 24 часа на температури од 37 °C за бактерије и 48 часа на температури од 28 °C у току 48 часа за гљивице. Промена боје у удубљенима праћена је визуелно. Сви експерименти су урађени у три понављања.

4.7. СТАТИСТИЧКА ОБРАДА РОДАТАКА

Статистички софтвер SPSS (верзија 20) коришћен је за анализу добијених података. Резултати су приказани као средње вредности ± стандардна девијација три аналитичка мерења. Једнофакторска анализе варијансе (АНОВА) коришћена је за утврђивање постојања статистичке значајности средњих вредности мерења. Накнадним Tukey HSD тестом је утврђивано између којих конкретно група постоји статистички значајна разлика. У свим статистичким анализама, интервал поверења је 95% са статистичком значајношћу од α < 0,05. IC₅₀ вредности су израчунате регресионом анализом. Израчуната је једначина регресионе праве (y=a+bx), при чему вредности x представљају различите концентрације екстраката, а y вредности представља проценат инхибиције.
5. РЕЗУЛТАТИ
Испитивања екстраката различитих делова биљака обухватали су припрему биљног материјала, екстракцију помоћу два растварача (хлороформа и метанола), испитивање хемијског састава добијених екстраката, као и испитивање деловања екстраката. Испитивање хемијског састава екстраката гранчица и листова обухватало је одређивање укупног садржаја фенола и флавоноида као и HPLC-UV анализу екстраката. Испитивање деловања екстраката обухватило је одређивање антиоксидативне и антимикробне активности. Антиоксидативна активност је процењена на основу укупног антиоксидативног капацитета, способности неутрализације слободних радикала, инхибиције липидне пероксидације и Fe$^{2+}$ хелатационе активности. Такође, испитано је антимикробно дејство екстраката Daphne врста на шест бактеријских и два гљивична соја.

5.1. Екстракција метанолом и хлороформом

Екстракција гранчица и листова три Daphne врсте (D. blagayana, D. cneorum и D. alpina) извршена је употребом метанола и хлороформа као растварача и резултати приноса сувих екстраката дати су у табели 3. У зависности од материјала и коришћених растварача за екстракцију садржај сувог екстракта у испитиваним узорцима се кретао у опсегу од 2,12% до 25,47%.

Табела 3. Приноси екстракције различитих делова три Daphne врсте употребом растварача различитих поларности.

<table>
<thead>
<tr>
<th>Материјал за екстракцију</th>
<th>Принос екстракта (g/100g дроге)</th>
<th>Растварач</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хлороформ</td>
<td>Метанол</td>
</tr>
<tr>
<td>D. blagayana</td>
<td>2,12</td>
<td>24,37</td>
</tr>
<tr>
<td>D. cneorum</td>
<td>2,20</td>
<td>19,38</td>
</tr>
<tr>
<td>D. alpina</td>
<td>2,08</td>
<td>23,03</td>
</tr>
<tr>
<td>Гранчице</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. blagayana</td>
<td>7,02</td>
<td>27,46</td>
</tr>
<tr>
<td>D. cneorum</td>
<td>3,71</td>
<td>19,78</td>
</tr>
<tr>
<td>Листови</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. alpina</td>
<td>5,92</td>
<td>25,47</td>
</tr>
</tbody>
</table>
Разлика у приносу екстракције уочава се код екстраката добијених употребом метанола као растварача (19,78-27,46 g/100g дрoge) у односу на екстракте добијене екстракцијом помоћу хлороформа (2,08-7,02 g/100g дрoge). Знатно већи принос метанолних екстраката у односу на хлороформскe екстракте резултат је веће поларности метанола као растварача.

5.2. ХЕМИЈСКИ САСТАВ ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA

5.2.1. Садржај укупних фенола и flavоноида у екстрактима

Квантитативни садржај flavоноида и биљних полифенолних једињења у испитиваним екстрактима одређен је спектрофотометријским методама које су детаљно описане у експерименталном делу рада. Као стандарди су коришћени гална киселина (за укупне феноле) и рутин (за flavоноиде). Добијени резултати су изражени преко mg еквивалената галне киселине по g сувог екстракта, односно mg еквивалената рутина по g сувог екстракта. Резултати одређивања укупног фенолног и flavоноидног садржаја у испитиваним екстрактима и однос flavоноида према фенолима дат је у табели 4.
Табела 4. Садржај укупних фенола, флавоноида и однос УФЛ/УФ у метанолским и хлороформским екстракатима гранчица и листова три Daphne врсте.

<table>
<thead>
<tr>
<th>Биљка</th>
<th>Екстракт</th>
<th>УФ (mg EGA/g)</th>
<th>УФЛ (mg ERU/g)</th>
<th>(УФЛ/УФ)100 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. blagayana</td>
<td>ГХЛР1</td>
<td>90,26±0,69</td>
<td>35,24±0,55</td>
<td>39,04</td>
</tr>
<tr>
<td></td>
<td>ГМЕТ1</td>
<td>75,88±0,54</td>
<td>29,95±0,39</td>
<td>39,47</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР1</td>
<td>76,56±0,89</td>
<td>26,79±0,34</td>
<td>34,99</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ1</td>
<td>77,45±0,43</td>
<td>27,98±0,88</td>
<td>36,12</td>
</tr>
<tr>
<td></td>
<td>ГХЛР2</td>
<td>76,45±0,79</td>
<td>24,67±0,35</td>
<td>32,27</td>
</tr>
<tr>
<td>D. cneorom</td>
<td>ГМЕТ2</td>
<td>68,77±0,95</td>
<td>26,56±0,67</td>
<td>38,62</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР2</td>
<td>69,67±0,85</td>
<td>34,23±0,89</td>
<td>49,13</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ2</td>
<td>74,57±0,35</td>
<td>29,55±0,95</td>
<td>39,62</td>
</tr>
<tr>
<td></td>
<td>ГХЛР3</td>
<td>80,56±0,35</td>
<td>34,65±0,89</td>
<td>43,01</td>
</tr>
<tr>
<td>D. alpina</td>
<td>ГМЕТ3</td>
<td>88,98±1,05</td>
<td>31,45±0,15</td>
<td>35,35</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР3</td>
<td>78,98±0,67</td>
<td>28,09±0,85</td>
<td>35,57</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ3</td>
<td>85,88±0,97</td>
<td>32,65±0,89</td>
<td>38,02</td>
</tr>
</tbody>
</table>

ГХЛР-хлороформски екстракт гранчица; ГМЕТ- метанолни екстракт гранчица; ЛХЛР- хлороформски екстракт листова; ЛМЕТ- метанолни екстракт листова; 1- Daphne blagayana; 2- Daphne cneorom, 3- Daphne alpina; УФ- укупни феноли; УФЛ- укупни флавоноиди; приказане су средње вредности три мерења ±СД (стандардна девијација).

5.2.1.1. Укупни феноли и флавоноиди у испитиваним екстрактима врсте *D. blagayana*

Резултати укупног фенолног и флавоноидног садржаја хлороформских и метанолских екстраката гранчица и листова *D. blagayana* приказани су на хистограму 1. Фенолни садржај хлороформског екстракта гранчица (90,26±0,69 mg GA/g) био је већи од оног у метанолском екстракту лишћа (77,45±0,43 mg GA/g), хлороформском екстракту лишћа (76,56±0,89 mg GA/g) и метанолском екстракту гранчица (75,88±0,54 mg GA/g).

Садржај флавоноида у испитиваним екстрактима кретао се од 26,79±0,34 до 35,24±0,55 mg RU/g, при чему је најмања вредност измерена за хлороформски екстракт лишћа а највећа за хлороформски екстракт гранчица.
Хистограм 1. Садржај укупних фенола и флавоноида у екстрактима врсте *D. blagayana*

5.2.1.2. Укупни феноли и флавоноиди у испитиваним екстрактима врсте *D. cneorum*

Резултати укупног флавоноидног и фенолног садржаја хлороформских и метанолских екстраката гранична и листова врсте *D. cneorum* приказане су на хистограму 2. Садржај укупних фенола се кретао у опсегу од 68,77±0,95 mg GA/g до 76,45±0,79 mg GA/g. Укупни фенолни садржај код хлороформског екстракта граничица (76,45±0,79 mg GA/g) био је већи од оног код метанолског екстракта листова (74,57±0,35 mg GA/g). Хлороформског екстракта листова (69,67±0,85 mg GA/g) и метанолског екстракта граничница (68,77±0,95 mg GA/g).

Садржај укупних флавоноида у испитиваним екстрактима биљке *D. cneorum* кретао се у опсегу од 24,67±0,35 mg RU/g до 34,23±0,89 mg RU/g, при чему је укупних флавоноида било највише у хлороформском екстракту листова, а најмање у хлороформском екстракту граничница.

![Хистограм 1. Садржај укупних фенола и флавоноида у екстрактима врсте *D. blagayana*](image_url)
5.2.1.3. Укупни феноли и флавоноиди у испитаним екстрактима врсте *D. alpina*

Резултати укупног фенолног и флавоноидног садржаја хлороформских и метанолских екстраката граници и листова врсте *D. alpina* приказани су на хистограму 3. Међу испитиваним екстрактима, укупни фенолни садржај је био највећи у метанолском екстракту граници (88,98±1,05 mg GA/g) а најмањи у хлороформском екстракту листова (78,98±0,67 mg GA/g).

Укупан флавоноидни садржај у екстрактима врсте *D. alpina* кретао се у опсегу од 28,09±0,85 mg RU/g до 34,65±0,89 mg RU/g. Највећи флавоноидни садржај био је у хлороформском екстракту граници, док је најмањи садржај био у хлороформском екстракту листова.
ХИСТОГРАМ 3. Садржај укупних фенола и флavoноида у екстрактима врсте *D. alpina*

5.3. АНТИОКСИДАТИВНЕ АКТИВОСТИ ЕКСТРАКАТА *D.BLAGAYANA*, *
D.CNEORUM И *D. ALPINA*

5.3.1. Укупан антиоксидативни капацитет испитиваних екстраката

Укупан антиоксидативни капацитет испитиваних екстраката, одређен фосфомолидбенском методом, приказан је на хистограмима 4-6.

Резултати испитивања укупног антиоксидативног капацитета врсте *D. blagayana* показују да хлороформски екстракт границица испољава најјачу активност (78,45 mg AA/g) док је метанолски екстракт листова показао најслабију активност (68,98 mg AA/g).
Хистограм 4. Укупан антиоксидативни капацитет екстраката врсте *D. blagayana*

Укупан антиоксидативни капацитет екстраката врсте *D. cneorum* добијених помоћу различитих растворача и од различитих делова биљке се кретао од 69,86 mg AA/g до 70,98 mg AA/g. Највећи укупни антиоксидативни капацитет имао је хлороформски екстракт листова, док је метанолски екстракт гранича показао најмањи антиоксидативни капацитет.

Хистограм 5. Укупан антиоксидативни капацитет екстраката врсте *D. cneorum*
Екстракти биљне врсте *D. alpina* показали су антиоксидативну активност која је била у опсегу од 69,71±0,54 mg AA/g за метанолски екстракт листова до 73,55±1,02 mg AA/g за хлороформски екстракт гранчица (хистограм 5).

Хистограм 6. Укупан антиоксидативни капацитет екстраката врсте *D. alpina*

5.3.2. Капацитет неутралисања DPPH∙ и OH∙ радикала испитиваних екстраката

Капацитет неутралисања DPPH∙ и OH∙ радикала испитиваних екстраката биљке *D. blagayana* приказан је на хистограму 7. Рриказане вредности представљају IC₅₀ вредности изражене у µg/ml. Капацитет неутралисања DPPH∙ радикала кретао се у опсегу од 20,95 µg/ml до 25,24 µg/ml, док се капацитет неутралисања OH∙ радикала кретао у опсегу од 85,88 µg/ml до 99,11 µg/ml. Најјачу активност неутралисања оба радикала показао је метанолски екстракт листова, што се уочава на основу најмањих IC₅₀ вредности. Са друге стране, најслабију антиоксидативну активност према DPPH∙ радикалима има хлороформски екстракт листова (IC₅₀=25,24 µg/ml), док према OH∙ радикалима најлабију активност испοљио је хлороформски екстракт гранчица (IC₅₀= 99,11 µg/ml).
Вредности добијене за стандарде: DPPH: ГА=3,79±0,69; АА=6,05±0,34; БХТ=15,61±1,26
ОН: ГА=59,14±1,10; АА=160,55±2,31; БХТ=33,92±0,79

Хистограм 7. Капацитет неутралисања DPPH и OH радикала екстраката врсте D. blagayana

Антиоксидативна активност, процењена преко капацитета неутрализације DPPH и OH радикала екстраката биљке D. cneorum приказана је на хистограму 8. Најизраженију активност неутрализације обе врсте радикала показао је метанолски екстракт листова са IC50 вредностима за DPPH тест (22,56 µg/ml), односно за OH тест (88,77 µg/ml). Са друге стране, најслабију антиоксидативну активност показали су хлороформски екстракт листова за DPPH тест (IC50=24,57 µg/ml), односно метанолски екстракт граници за OH тест (IC50=97,45 µg/ml).
Вредности добијене за стандарде: DPPH: ГА=3.79±0.69; АА=6.05±0.34; БХТ=15.61±1.26
OH: ГА=59.14±1.10; АА=160.55±2.31; БХТ=33.92±0.79

Хистограм 8. Капацитет неутралисања DPPH∙ и OH∙ радикала екстракатата биљке D. cneorum

Екстракти добијени од гранчица и листова биљке D. alpina показали су антиоксидативну активност проценету преко капацитета неутралисања DPPH∙ и OH∙ радикала (хистограм 9). Све IC₅₀ вредности добијене за DPPH∙ тест су биле изнад 20 µg/ml. Метанолски екстракт гранчица је показао највећу активност (IC₅₀=21.57±1.03 µg/ml), док су метанолски екстракт листова (IC₅₀=23.15±1.05 µg/ml) и хлороформски екстракти гранчица и листова (IC₅₀=25.45±1.05 µg/ml и IC₅₀=25.45±0.89 µg/ml) показали слабију активност. Међутим, антиоксидативне активности су мање у односу на стандард – БХТ. Што се тиче капацитета неутралисања OH∙ радикала, најбољу активност показао је хлороформски екстракт листова (IC₅₀=80.56±1.05 µg/ml), док су метанолски екстракти гранчица и листова (IC₅₀=91.55±1.05 µg/ml и IC₅₀=87.98±1.07 µg/ml), као и хлороформски екстракт гранчица (IC₅₀=98.86±0.94 µg/ml) показали слабију активност.
Хистограм 9. Капацитет неутралисања DPPH и OH радикала екстракатата биљке D. alpina

5.3.3. Инхибиција липидне пероксидације и Fe^{2+} хелатациона активност испитиваних екстраката

На хистограму 10. приказане су IC_{50} вредности екстраката биљке D. blagayana за инхибицију липидне пероксидације (ЛП) и Fe^{2+} хелатациона активност (ХЕЛ). Поређењем IC_{50} вредности за ЛП, може се уочити да постоји веома мала разлика међу испитиваним екстракатима. У поређењу са стандартом (БХТ) сви екстракти су испољили знатно слабију активност. Највећу ЛП активност испољио је хлороформски екстракт листова (IC_{50}=33,23 µg/ml) док је најслабију активност испољио хлороформски екстракт границица (IC_{50}=36,46 µg/ml). Што се тиче ХЕЛ активности, IC_{50} вредности су се кретале у опсегу од 40,95 µg/ml до 45,91 µg/ml. Редослед у испољавању Fe^{2+} хелатационе активности је: ЛМЕТ1>ГМЕТ1>ЛХЛР1>ГХЛР1.
Вредности добијене за стандарде (ЛР): ГА=3,79±0,69; АА=6,05±0,34; БХТ=15,61±1,26; α-токоферол=0,48±0,05

Хистограм 10. Ротенцијал инхибиције липидне пероксидације (ЛП) и Fe²⁺ хелатациона активност (ХЕЛ) биљке D. blagayana

Потенцијална антиоксидативна активност екстраката биљке D. cneorum, на основу IC₅₀ вредности за ЛП и ХЕЛ активности приказана је на хистограму 11. Највећи потенцијал на ЛП показао је метанолски екстракт гранична, постижући IC₅₀ вредност при концентрацији 28,09 µg/ml, док је најслабији потенцијал показао хлороформски екстракт гранича, који IC₅₀ вредност достиже при концентрацији 37,17 µg/ml. IC₅₀ вредности ХЕЛ активности су се кретале у опсегу од 39,56 µg/ml до 44,57 µg/ml, при чему је најјачу активност показао метанолски екстракт листова, а најслабију хлороформски екстракт листова.
*Вредности добијене за стандарде: DPPH: ГА=3,79±0,69; АА=6,05±0,34; БХТ=15,61±1.26; а-токоферол=0,48±0,05.

Хистограм 11. Ротенцијал инхибиције липидне пероксидације (ЛП) и Fe^{2+} хелатационе активности (ХЕЛ) биљке *D. cneorum*

Концентрације екстраката *D. alpina* потребне за постизање IC_{50} вредности у ЛП и ХЕЛ моделима антиоксидативне анализе приказана су на хистограму 12. У ЛП моделу, опсег IC_{50} вредности био је од 26,79 µg/ml до 35,24 µg/ml, при чему је редослед антиоксидативне активности био следећи: ЛМЕТ3>ЛХЛР3>ГХЛР3>ГМЕТ3. Најнижу концентрацију при којој се постиже IC_{50} вредност Fe^{2+} хелатационе активност имао је метанолски екстракт гранича (21,57 µg/ml), док је највиша концентрација за постизање IC_{50} вредности била потребна за хлороформски екстракт гранича (45,45 µg/ml), који самим тим, има и најнижи антиоксидативни потенцијал у овом моделу испитивања.
*Вредности добијене за стандарде: DPPH: ГА=3,79±0,69; АА=6,05±0,34; БХТ=15,61±1,26; α-токоферол=0,48±0,05.

Хистограм 12. Ротенцијал инхибиције липидне пероксидације (ЛП) и Fe^{2+} хелатациона активност (ХЕЛ) биљке D. cneorum

5.4. HPLC-UV АНАЛИЗА ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM I D. ALPINA

У циљу идентификације најзаступљенијих компоненти испитиваних екстраката Daphne врста коришћена је HPLC-UV анализа.

5.4.1. HPLC анализа испитиваних екстраката врсте D. blagayana

На сликама од 28 до 33 приказани су HPLC хроматограми метанолских и хлороформских екстраката лишћа и граници D. blagayana и стандарда снимљени на 325 nm. Резултати HPLC анализе ових екстраката указују на присуство неколико различитих метаболита, укључујући 7,8-диједроксикумарин (дафнетин, t_r= 2,25±0,10 мин.). Поред дафнетина, у екстрактима је идентификована и 4-хидроксибензоева киселина (t_r= 0,96±0,10 мин.). Идентификација ових метаболита извршена је поређењем ретенционих времена и UV спектара стандарда са ретенционим временима и UV спектрама конституената екстраката. Интензитет сигнала горе наведених метаболита у њиховим HPLC хроматограмима био је различит и специфичан за сваки екстракт. Однос ова два метаболита је био такав да је сигнал од дафнетина био
доминантији (већег интензитета) у хлороформским екстрактима. За разлику од хлороформских екстраката уочени су сигнали већег интензитета за 4-хидроксибензозеву киселину код метанолских екстраката. Поред ова два једињења у приказаним хроматограмима се уочавају и други сигнали који се налазе на мањим ретенционим временима. Анализом њихових UV спектара можемо претпоставити да ова једињења припадају класама кумарина и фламоида. Анализом UV спектара дафнетина уочавају се апсорпциони максимуми на следећим таласним дужинама: 204 nm (максимум највећег интензитета), 267 nm (максимум најслабијег интензитета) и 325 nm.

![Diagram](image)

Слика 28. *HPLC* хроматограм хлороформског екстракта граници врсте *D. blagayana* снимљен на 325 nm
Слика 29. HPLC хроматограм метанолског екстракта граници врсте *D. blagayana* снимљен на 325 nm.
Слика 30. HPLC хроматограм хлороформског екстракта листова врсте D. blagayana снимљен на 325 nm
Слика 31. HPLC хроматограм метанолског екстракта листова врсте D. blagayana снимљен на 325 nm
Слика 32. HPLC хроматограм и UV спектар дафнитина
Слика 33. HPLC хроматограм и UV спектар 4-хидроксибензоевой киселине
5.4.2. HPLC анализа испитиваних екстраката врсте Daphne alpina

На сликама од 34 до 37 приказани су HPLC хроматограми хлороформских и метанолских екстраката гранчица и листова врсте D. alpina снимљени на 325 nm. На основу хроматограма и UV спектара у овим екстрактима уочава се присуство 4-хидроксибензоеве кисeline и два хидроксикумаринска деривата, дафнетина и 7-хидроксикумарина (умбелиферона). Као нови метаболит ових екстраката, који није био присутан у екстрактима врсте D. blagayana, идентификован је 7-хидроксикумарин, који је у литератури познат као умбелиферон. Сигнал овог кумарина јавља се на ретенционом времену t_R=3,25±0.10 мин. Његово присуство потврђено је поређењем ретенционог времена и UV спектра стандарда. UV спектар умбелиферона, у области од 200 до 360 nm садржи пет апсорпционах максимума на таласним дужинама: 220 nm, 240 nm, 255 nm, 290 nm и 330 nm (слика 38). Дафнетин има најинтензивније сигнале у HPLC хроматограмима хлороформских екстраката гранчица и листова. Сигнал најмањег интензитета који потиче од дафнетина уочава се у HPLC хроматограму метанолског екстракта гранчица. За разлику од хлороформских екстраката, сигнали од дафнетина у HPLC хроматограмима метанолских екстраката су знатно слабијег интензитета, што доводи до претпоставке да је ово једињење знатно заступљеније у хлороформским него у метанолским екстрактима гранчица и листова. Са друге стране, супротна запажања се могу уочити у случају 4-хидроксибензоеве киселине. У HPLC хроматограму хлороформског екстракта гранчица снимљеном на 325 nm уочава се веома интензиван сигнал на t_R=3,25±0.10 мин. који потиче од 7-хидроксикумарина (умбелиферона). У хлороформском и метанолском екстракту листова сигнал од овог једињења је знатно мањег интензитета, док се у HPLC хроматограму метанолског екстракта гранчица једва уочава.
Слика 34. HPLC хроматограм хлороформског екстракта гранчица врсте D. alpina снимљен на 325 nm
Слика 35. HPLC хроматограм метанолског екстракта гранчица врсте D. alpina снимљен на 325 nm
Слика 36. HPLC хроматограм хлороформског екстракта листова врсте *D. alpina* снимљен на 325 nm
Слика 37. HPLC хроматограм метанолског екстракта листова врсте D. alpina снимљен на 325 nm
Слика 38. HPLC хроматограм и UV спектар умбелиферона
5.4.3. HPLC анализа испитиваних екстраката врсте D. cneorum

На сликах од 39 до 42 приказани су HPLC хроматограми испитиваних екстраката биљке D.cneorum. У HPLC хроматограмима хлороформског екстракта граница и хлороформског екстракта листова биљке D.cneorum као најинтензивнији пик на t_R=2,18±0.10 мин. уочава се сигнал који потиче од дафнетина. Осим овог сигнала у овим HPLC хроматограмима уочава се и веома слаб сигнал који потиче од 4-хидроксибензоеве киселине. Са друге стране у HPLC хроматограмима метанолских екстраката граница и листова најинтензивнији сигнал потиче од 4-хидроксибензоеве киселине, док је у овим хроматограмима сигнал који потиче од дафнетина знатно слабијег интензитета. Ни у једном од анализираних екстраката D.cneorum није забележено присуство умбелиферона.

На основу свега може се закључити да екстракати граница и листова биљке D.cneorum као најзаступљеније метаболите садрже 4-хидроксибензоеву кисelinu и дафнетин, а за разлику од екстраката биљке D. alpina, не садрже умбелиферон.
Слика 39. HPLC хроматограм хлороформског екстракта гранича врсте *D. cneorum* снимљен на 325 nm
Слика 40. HPLC хроматограм метанолског екстракта граници врсте *D. cneorum* снимљен на 325 nm
Слика 41. HPLC хроматограм хлороформског екстракта листова врсте D. cneorum снимљен на 325 nm
Слика 42. *HPLC* хроматограм метанолског екстракта листова врсте *D. cneorum* снимљен на 325 nm
Структуре идентификованих једињења приказане су на слици 43.

Слика 43. Структуре идентификованих једињења

У табели 5. приказано је присуство идентификованих метаболита у екстрактима D. blagayana, D. cneorum и D. alpina.

Табела 5. Присуство најзаступљенијих метаболита у испитиваним екстрактима

<table>
<thead>
<tr>
<th>Биљка</th>
<th>Екстракт</th>
<th>Дафнетин</th>
<th>Умбелиферон</th>
<th>4-хидроксибенз zakładов киселина</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. blagayana</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>ГХЛР1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ГМЕТ1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ1</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D. cneorum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td>ГХЛР2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ГМЕТ2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ2</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D. alpina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>ГХЛР3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ГМЕТ3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>ЛМЕТ3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
5.5. ANТИМИКРОБНА АКТИВНОСТ ЕКСТРАКАТА D.BLAGAYANA, D.CNEORUM И D. ALPINA

Микродилуционом методом, описаном у експерименталном делу дисертације, одређиване су минималне инхибиторне концентрације испитиваних екстраката у in vitro условима, које представљају најнижу концентрацију екстракта која спречава раст микроорганизма.

5.5.1. Антимикробна активност испитиваних екстраката врсте D. blagayana

Антибактеријска активност метанолских и хлороформских екстраката граничница и листова D. blagayana, изражена као минимална инхибиторна концентрација (MIC), кретала се у опсегу од 15,62 до 125 µg/ml (табела 7). Најмања вредност MIC забележена је у случају метанолског екстракта граничница према врсти K. pneumoniae и хлороформског екстракта листова према врстама S. aureus и P. mirabilis (MIC=15,62 µg/ml). Најслабије активности (MIC=125 µg/ml) показали су хлороформски екстракт граничница према P. vulgaris, метанолски екстракт граничница према B. subtilis и хлороформски екстакт листова према P. vulgaris, као и метанолски екстракт листова према S. aureus. У случају испитивања антифунгалне активности метанолских и хлороформских екстраката граничница и листова D. blagayana вредности MIC су се кретале у опсегу од 15,62 до 125 µg/ml. Најбољу активност испољио је метанолски екстракт граничница (MIC=15,62 µg/ml) и метанолски екстракт листова (MIC=31,25 µg/ml) према врсти A. niger. Најслабије активности (MIC=125 µg/ml) забележене су у случају метанолског екстракта граничница према врсти C. albicans, хлороформског екстракта граничница према A. niger и метанолског екстракта листова према C. albicans.
Табела 7. Антимикробна активност екстраката врсте *D. blagayana*

<table>
<thead>
<tr>
<th>Микроорганизми</th>
<th>ГХЛР1</th>
<th>ЛХЛР1</th>
<th>ГМЕТ1</th>
<th>ЛМЕТ1</th>
<th>Тетрациклин</th>
<th>Кетоконазол</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 25923</td>
<td>62,5</td>
<td>15,62</td>
<td>62,5</td>
<td>125</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>K. pneumoniae ATCC 13883</td>
<td>31,25</td>
<td>62,5</td>
<td>15,62</td>
<td>62,5</td>
<td>0,49</td>
<td>-</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>62,5</td>
<td>62,5</td>
<td>62,5</td>
<td>62,5</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>P. vulgaris ATCC 13315</td>
<td>125</td>
<td>125</td>
<td>31,25</td>
<td>62,5</td>
<td>1,95</td>
<td>-</td>
</tr>
<tr>
<td>P. mirabilis ATCC 14153</td>
<td>62,5</td>
<td>15,62</td>
<td>62,5</td>
<td>62,5</td>
<td>1,95</td>
<td>-</td>
</tr>
<tr>
<td>B. subtilis ATCC 6633</td>
<td>31,25</td>
<td>62,5</td>
<td>125</td>
<td>62,5</td>
<td>0,24</td>
<td>-</td>
</tr>
<tr>
<td>C. albicans ATCC 10231</td>
<td>62,5</td>
<td>62,5</td>
<td>125</td>
<td>125</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>A. niger ATCC 16404</td>
<td>125</td>
<td>62,5</td>
<td>15,62</td>
<td>31,25</td>
<td>-</td>
<td>0,98</td>
</tr>
</tbody>
</table>
5.5.2. Антимикробна активност испитиваних екстраката врсте D. cneorum

У табели 8. приказан су резултати испитивања антимикробне активности метанолских и хлороформских екстраката граница и листова биљке D. cneorum. Вредности MIC су се кретале од 15,62 µg/ml до 62,5 µg/ml. Највећу осетљивост према метанолском екстракту граница (MIC=15,62 µg/ml) показале су бактерије P. mirabilis и K. pneumoniae, док су B. subtilis и P. vulgaris биле најосетљивије према хлороформским екстрактима листова односно граница. Екстракти граница су показали исте активности према S. aureus и E. coli (MIC=62,5 µg/ml). Са друге стране, екстракти листова су имали исте MIC вредности за S. aureus и K. pneumoniae (31, 25 µg/ml) као и за P. vulgaris и P. mirabilis (62,5 µg/ml). Испитивани ектракти показују антифунгалну активност, за коју су се вредности MIC кретале у опсегу од 15,62 µg/ml до 125 µg/ml. Најосетљивија је била C. albicans према хлороформском екстракту листова и метанолском екстракту граница.
Табела 8. Антимикробна активност екстраката врсте *D. cneorum*

<table>
<thead>
<tr>
<th>Микроорганизми</th>
<th>MIC (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ГХЛР2</td>
</tr>
<tr>
<td>S. aureus ATCC 25923</td>
<td>62,5</td>
</tr>
<tr>
<td>K. pneumoniae ATCC 13883</td>
<td>31,25</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>62,5</td>
</tr>
<tr>
<td>P. vulgaris ATCC 13315</td>
<td>15,62</td>
</tr>
<tr>
<td>P. mirabilis ATCC 14153</td>
<td>62,5</td>
</tr>
<tr>
<td>B. subtilis ATCC 6633</td>
<td>31,25</td>
</tr>
<tr>
<td>C. albicans ATCC 10231</td>
<td>31,25</td>
</tr>
<tr>
<td>A. niger ATCC 16404</td>
<td>62,5</td>
</tr>
</tbody>
</table>
5.5.3. Антимикробна активност испитиваних екстраката врсте D. alpina

Антимикробна активност екстраката листова и гранчица биљке D. alpina добијених помоћу различитих раствараца дата је у табели 9. Најмање МIC вредности (15,62 μg/ml) имали су хлороформски екстракт гранчица и листова према B. subtilis, као и метанолски екстракт листова према P. vulgaris. Хлороформски и метанолски екстракти гранчица показали су исте активности (MIC=62,5 μg/ml) према S. aureus, P. vulgaris и P. mirabilis. Са друге стране, хлороформски и метанолски екстракти листова су имали исте MIC вредности (31,25 μg/ml) према S. aureus и E. coli. Најслабију активност (MIC=125 μg/ml) имао је метанолски екстракт листова према K. pneumoniae и B. subtilis. Генерално, хлороформски екстракти су показали боље антимикробне активности од метанолских екстраката, са изузетком дејства на P. mirabilis где су MIC вредности исте за све испитиване екстракте. Што се тиче антифунгалне активности, MIC вредности су се кретале у опсегу од 31,25 μg/ml до 125 μg/ml, при чему је најбољу активност испољио хлороформски екстракт листова према обе врсте испитиваних плесни.
Табела 9. Антимикробна активност екстраката биљке *D. alpina*

<table>
<thead>
<tr>
<th>Микроорганизми</th>
<th>ГХЛРЗ</th>
<th>ЛХЛРЗ</th>
<th>ГМЕТЗ</th>
<th>ЛМЕТЗ</th>
<th>Тетрациклин</th>
<th>Кетоконазол</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 25923</td>
<td>62,5</td>
<td>31,25</td>
<td>62,5</td>
<td>31,25</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>K. pneumoniae ATCC 13883</td>
<td>31,25</td>
<td>31,25</td>
<td>62,5</td>
<td>125</td>
<td>0,49</td>
<td>-</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>31,25</td>
<td>31,25</td>
<td>62,5</td>
<td>31,25</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>P. vulgaris ATCC 13315</td>
<td>62,5</td>
<td>31,25</td>
<td>62,5</td>
<td>15,62</td>
<td>1,95</td>
<td>-</td>
</tr>
<tr>
<td>P. mirabilis ATCC 14153</td>
<td>62,5</td>
<td>62,5</td>
<td>62,5</td>
<td>62,5</td>
<td>1,95</td>
<td>-</td>
</tr>
<tr>
<td>B. subtilis ATCC 6633</td>
<td>15,62</td>
<td>15,62</td>
<td>62,5</td>
<td>125</td>
<td>0,24</td>
<td>-</td>
</tr>
<tr>
<td>C. albicans ATCC 10231</td>
<td>62,5</td>
<td>31,25</td>
<td>62,5</td>
<td>125</td>
<td>0,98</td>
<td>-</td>
</tr>
<tr>
<td>A. niger ATCC 16404</td>
<td>62,5</td>
<td>31,25</td>
<td>62,5</td>
<td>125</td>
<td>-</td>
<td>0,98</td>
</tr>
</tbody>
</table>
5.6. КОМПАРАТИВНА СТАТИСТИЧКА АНАЛИЗА ДОБИЈЕНИХ РЕЗУЛТАТА

5.6.1. Једнофакторска анализа варијансе укупних фенола, флавоноида и антиоксидативних активности

Једнофакторском анализом варијансе (АНОВА) утврђено је постојање статистички значајне разлике (р˂0,05) између испитиваних екстраката у количини укупних фенола и флавоноида као и испољеним антиоксидативним активностима (тabela 10.).

Табела 10. Анализа варијансе (АНОВА) вредности укупних фенола, флавоноида и антиоксидативних активности испитиваних узорака и стандарда

<table>
<thead>
<tr>
<th></th>
<th>Укупни феноли</th>
<th>Укупни флавоноиди</th>
<th>Укупни антиокс. капацитет</th>
<th>Инхибиција скевинџе активности</th>
<th>Fe²⁺ хелатација</th>
<th>Неутрали сање ОН• радикала</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>248,331</td>
<td>74,000</td>
<td>52,408</td>
<td>137,581</td>
<td>1.093,654</td>
<td>203,763</td>
</tr>
<tr>
<td>p</td>
<td>0,000*</td>
<td>0,000*</td>
<td>0,000*</td>
<td>0,000*</td>
<td>0,000*</td>
<td>0,000*</td>
</tr>
</tbody>
</table>

F - експериментална вредност F-дистрибуције
p - вероватноћа за прихватање нулте хиппотезе
* - разлика је статистички значајна (р˂0,05)

Како би се утврдило између којих конкретно група постоји статистички значајна разлика резултати мерења су анализирани накнадним Tukey HSD тестом.

5.6.2. Tukey’s HSD тестирање укупног фенолног садржаја испитиваних екстраката

Међу екстрактима биљке D. blagayana, једино се хлороформски екстракт граница статистички значајно разликовао по количини укупних фенола од осталих екстраката ове биљке (тabela 11). Са друге стране, анализом екстраката добијених од различитих делова биљке D. alpina, статистички значајна разлика у садржају фенолних јединиња није утврђено само између хлороформских екстраката граница и листова. Код екстраката добијених из биљке D. cneorum, статистички значајне разлике није било између
хлорофомског екстракта гранчица и метанолског екстракта листова, као и хлороформског екстракта листова и метанолносног екстракта гранчица ове биљке. Сви екстракти биљке D. alpina се статистички значајно разликују по садржају фенолних молекула од испитиваних екстраката биљке D. cneorum. Компарацијом екстраката D. alpina са екстрактима биљке D. blagayana, углавном је установљено постојање статистички значајне разлике у садржају укупних фенола. Разлике није било између метанолског екстракта гранчица и хлороформског екстракта листова D. alpina према хлороформском екстракту гранчица односно метанолског екстракта листова D. blagayana. Што се тиче компаративне статистичке анализе екстраката биљака D. cneorum и D. blagayana, по садржају укупних фенолних једињења, хлороформски екстракт гранчица D. cneorum се није разликовао од метанолских екстраката гранчица и листова и хлороформског екстракта гранчица биљке D. blagayana. Нису се статистички значајно разликовали ни метанолски екстракт листова D. cneorum и хлороформски екстракт биљке D. blagayana.
Табела 11. Статистичка анализа добијених резултата укупног фенолног садржаја испитиваних узорака

Tukey’s HSD тест

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,000</td>
<td>ГМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР3</td>
<td>0,002</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛХЛР3/ЛМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td>ЛХЛР3/ГХЛР2</td>
<td>0,015</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/ГХЛР2</td>
<td>0,998</td>
<td>ЛХЛР3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>0,632</td>
<td>ГМЕТ1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛХЛР3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛХЛР3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>0,000</td>
<td>ГМЕТ1/ЛМЕТ2</td>
<td>0,601</td>
<td>ГМЕТ3/ЛМЕТ3</td>
<td>0,002</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>0,002</td>
<td>ГМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>0,384</td>
<td>ГМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ1</td>
<td>0,991</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>0,939</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,879</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>0,023</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,004</td>
<td>ЛМЕТ3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,340</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>1,000</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>0,147</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,000</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,935</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,104</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>0,000</td>
<td>ЛХЛР2/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ1</td>
<td>0,349</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,000</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>0,000</td>
</tr>
</tbody>
</table>
5.6.3. Tukey’s HSD тестирање укупног флавоноидног садржаја испитиваних екстраката

Ро садржају укупних флавоноида, метанолски екстракт биљке *D. blagayana* се није статистички значајно разликовао од хлороформског екстракта листа и метанолског екстракта гранича исте биљке (табела 12). Између осталих екстраката ове биљке утврђено је постојање статистички значајне разлике у садржају флавоноидних једињења. Што се тиче екстраката добијених из биљке *D. alpina*, метанолски екстракт листова се није статистички значајно разликовао по садржају укупних флавоноида од метанолског и хлороформског екстракта гранича. Екстракти биљке *D. cneorum* су се међусобно разликовали по садржају укупних флавоноида, сем хлороформског и метанолског екстракта гранича, између којих није утврђено постојање статистички значајне разлике. Када се пореде екстракти добијени из различитих врста, садржај укупних флавоноида се није статистички значајно разликовао у више случајева. Тако се на пример метанолски екстракт гранича биљке *D. blagayana* није разликовао од хлороформског екстракта листова и метанолских екстраката биљке *D. alpina* као и метанолског екстракта листова биљке *D. cneorum*. Хлороформски екстракти биљке *D. blagayana* се нису разликовали од хлороформских екстракта *D. alpina*. Хлороформски екстракт листова биљке *D. cneorum* се није разликовао од хлороформских екстракта гранича друге две врсте као и метанолског екстракта листова биљке *D. alpina*. Такође, метанолски екстракт гранича ове биљке се није разликовао по садржају укупних флавоноида од хлороформских екстраката листова друге две врсте као и метанолског екстракта листова биљке *D. blagayana*. Метанолски екстракт листова *D. cneorum* се није разликовао од метанолског екстракта листова биљке *D. blagayana* и од два екстракта биљке *D. alpina* (хлороформски екстракт листова и метанолски екстракт гранича).
Таблица 12. Статистичка анализа добијених резултата укупног флавоноидног садржаја испитиваних узорака

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,000</td>
<td>ГМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР3</td>
<td>0,107</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ3</td>
<td>0,326</td>
<td>ЛХЛР3/ЛМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>0,995</td>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>0,004</td>
<td>ЛХЛР3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/ГХЛР2</td>
<td>0,000</td>
<td>ЛХЛР3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛХЛР3/ГМЕТ2</td>
<td>0,301</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,006</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛХЛР3/ЛМЕТ2</td>
<td>0,362</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>0,000</td>
<td>ГМЕТ1/ЛМЕТ2</td>
<td>1,000</td>
<td>ГМЕТ3/ЛМЕТ3</td>
<td>0,634</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>0,824</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>1,000</td>
<td>ГМЕТ3/ЛХЛР2</td>
<td>0,003</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ1</td>
<td>0,001</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,093</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>0,645</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,261</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>0,525</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,401</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,269</td>
<td>ЛМЕТ3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,000</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,042</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>0,097</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,065</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>1,000</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,000</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,003</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>1,000</td>
<td>ЛХЛР2/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ1</td>
<td>0,073</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,000</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>0,001</td>
</tr>
</tbody>
</table>
5.6.4. Tukey’s HSD тестирање укупног укупног антиоксидативног капацитета

испитиваних екстраката

Екстракти биљке *D. blagayana* су се по укупном антиоксидативном капацитету међусобно статистички значајно разликовали, сем метанолског екстракта гранича и метанолског екстракта листова (табела 13). Са друге стране, између екстраката биљке *D. cneorum* нема статистички значајне разлике у укупном антиоксидативном капацитету. Што се тиче екстраката добијених од биљке *D. alpina*, статистички значајно се разликовао хлороформски екстракт граница од осталих испитиваних екстраката ове биљке док међу осталим екстрактима ове биљке није било статистички значајне разлике. Компаративна анализа екстраката све три испитиване врсте је утврђено да не постоји статистички значајна разлика у укупном антиоксидативном капацитету између метанолских екстраката граница и метанолских екстраката листова. Роређењем екстраката листова биљке *D. alpina* са екстрактима добијеним из биљке *D. cneorum*, статистички значајна разлика је постојала једино између метанолског екстракта листова *D. alpina* и метанолског екстракта граница *D. cneorum*. Екстракти листова *D. alpina* се по укупном антиоксидативном капацитету нису разликовали и од метанолског екстракта граница биљке *D. blagayana*. Хлороформски екстракти *D. cneorum* као и метанолски екстракт граници ове биљке се није разликовала од метанолског екстракта листова биљке *D. blagayana*. Статистички значајна разлика није постојала ни између метанолског екстракта граница биљке *D. blagayana* и хлороформског екстракта граница и метанолског екстракта листова биљке *D. cneorum*.
Табела 13. Статистичка анализа добијених резултата укупног антиоксидативног капацитета испитиваних узорака

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,015</td>
<td>ГМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,001</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР3</td>
<td>0,989</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>0,859</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ3</td>
<td>0,231</td>
<td>ЛХЛР3/ЛМЕТ3</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>1,000</td>
<td>ЛХЛР3/ГХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/ГХЛР2</td>
<td>0,781</td>
<td>ЛХЛР3/ЛХЛР2</td>
<td>0,939</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР2</td>
<td>0,334</td>
<td>ЛХЛР3/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>1,000</td>
<td>ЛХЛР3/ЛМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>0,038</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,569</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ1</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,974</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,997</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>0,000</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,260</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,934</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>0,007</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,062</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,547</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,913</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,260</td>
<td>ЛМЕТ3/ЛМЕТ2</td>
<td>0,934</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,000</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,011</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>0,983</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,001</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,711</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>0,006</td>
<td>ЛХЛР2/ЛМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ1</td>
<td>0,998</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,000</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>0,983</td>
</tr>
</tbody>
</table>
5.6.5. Tukey’s HSD тестирање DPPH „скевинџер” активности испитиваних екстраката

Између свих тестирианих екстраката и стандарда (бутилхидрокситолуеан, аскорбинска киселина и гална киселина) постоји статистички значајна разлика у степену неутрализације DPPH радикала (табела 14).

Међусобним тестирањем екстраката биљке D. blagayana, статистички значајна разлика је постојала између хлороформског и метанолског екстракта листова. Активност хлороформског екстракта граничница се статистички разликовала од активности хлороформског екстракта листова и метанолског екстракта граничница. Међу осталим екстрактима ове биљке није било међусобне статистички значајне разлике у испољавању активности. Што се тиче екстраката добијених из биљке D. alpina, једино се активност метанолског екстракта граничница статистично значајно разликовала од активности које су испољили хлороформски екстракти граничника и листова ове биљке. Остали екстракти се нису међусобно разликовали по испољеној активности. Активности екстраката биљке D. cneorum нису се статистички значајно међусобно разликовале. Компаративном статистичком анализом екстраката све три биљне врсте, показано је да се активност екстраката D. blagayana најчешће разликовала од активности које су показале екстракти добијени из друге две биљне врсте. Тако се активност хлороформског екстракта граничница (D. blagayana) статистички значајно разликовала од хлороформских екстраката граничница и листова D. alpina и хлороформског екстракта листова D. cneorum, а метанолски екстракт листова разликовао од хлороформских екстраката граничница и листова биљака D. alpina, односно D. cneorum. Активност метанолског екстракта граничница D. blagayana се разликовала од активности хлороформског екстракта листова D. cneorum и хлороформских екстраката D. alpina. Активност хлороформског екстракта листова (D. blagayana) се разликовала од активности коју је испољио метанолни екстракт D. alpina. Статистички значајна разлика је постојала и међу активностима које су испољили метанолски екстракт граничника биљке D. alpina и хлороформски екстракт листова биљке D. cneorum.
Табела 14. Статистичка анализа добијених резултата DPPH „скевинџер” активности испитиваних узорака

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР/ЛХЛР1</td>
<td>0,004</td>
<td>ГМЕТ1/БХТ</td>
<td>0,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,895</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>1,000</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,994</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>1,000</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>0,005</td>
<td>ГМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>0,002</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>1,000</td>
<td>ГМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,024</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,324</td>
<td>ГМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>1,000</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,597</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,709</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,006</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,890</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>0,925</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>0,445</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>0,030</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,776</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,829</td>
<td>ЛМЕТ1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ2</td>
<td>0,982</td>
<td>ЛМЕТ1/АА</td>
<td>0,000</td>
<td>ЛМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ1/БХТ</td>
<td>0,000</td>
<td>ЛМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/АА</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,999</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>0,646</td>
</tr>
<tr>
<td>ГХЛР1/БХТ</td>
<td>0,000</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,003</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>0,001</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,263</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>0,001</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,110</td>
<td>ЛХЛР2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>0,998</td>
<td>ЛХЛР2/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>1,000</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,178</td>
<td>ЛХЛР2/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,005</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,059</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,400</td>
<td>ГХЛР3/ГА</td>
<td>0,000</td>
<td>ГМЕТ2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,187</td>
<td>ГХЛР3/АА</td>
<td>0,000</td>
<td>ГМЕТ2/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>1,000</td>
<td>ГХЛР3/БХТ</td>
<td>0,000</td>
<td>ГМЕТ2/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,286</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>0,034</td>
<td>ЛМЕТ2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,105</td>
<td>ЛХЛР3/ЛМЕТ3</td>
<td>0,847</td>
<td>ЛМЕТ2/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГА</td>
<td>0,000</td>
<td>ЛХЛР3/ГХЛР2</td>
<td>0,581</td>
<td>ЛМЕТ2/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/АА</td>
<td>0,000</td>
<td>ЛХЛР3/ЛХЛР2</td>
<td>1,000</td>
<td>ГА/АА</td>
<td>0,286</td>
</tr>
<tr>
<td>ЛХЛР1/БХТ</td>
<td>0,000</td>
<td>ЛХЛР3/ГМЕТ2</td>
<td>0,732</td>
<td>ГА/БХТ</td>
<td>0,000</td>
</tr>
</tbody>
</table>
5.6.6. Tukey’s HSD тестирање инхибиције липидне пероксидације испитиваних екстраката

Анализом варијансе IC₅₀ вредности тестираних узорака (екстраката и стандарда) показано је да постоји статистички значајна разлика у степену инхибиције липидне пероксидације (табела 15). Tukey’s HSD тестом је утврђено да статистички значајна разлика постоји између свих тестираних узорака и стандарда. Међу испитиваним екстрактима, разлика је постојала између метанолског екстракта листова биљке D. alpina и хлороформских екстраката гранчица биљака D. cneorum и D. blagayana. IC₅₀ вредности инхибиције липидне пероксидације осталих екстраката нису се статистички значајно разликовале.
Таbела 15. Статистичка аналiza резултата инхибиције липидне пероксидације испитиваних узорака

Tukey’s HSD тест

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,992</td>
<td>ГМЕТ1/ЛХЛР2</td>
<td>1,000</td>
<td>ЛХЛР3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>1,000</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>0,261</td>
<td>ЛХЛР3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>1,000</td>
<td>ГМЕТ1/ЛМЕТ2</td>
<td>0,693</td>
<td>ЛХЛР3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ГМЕТ1/ГА</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ3</td>
<td>0,115</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,103</td>
<td>ГМЕТ1/АА</td>
<td>0,000</td>
<td>ГМЕТ3/ГХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>1,000</td>
<td>ГМЕТ1/БХТ</td>
<td>0,000</td>
<td>ГМЕТ3/ЛХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,040</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>1,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,300</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>1,000</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>0,378</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,743</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>1,000</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>1,000</td>
<td>ГМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,123</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,183</td>
<td>ГМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,440</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,999</td>
<td>ГМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>1,000</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,020</td>
</tr>
<tr>
<td>ГХЛР1/АА</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,428</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,115</td>
</tr>
<tr>
<td>ГХЛР1/БХТ</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,864</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ1</td>
<td>1,000</td>
<td>ЛМЕТ1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ3/ЛМЕТ2</td>
<td>0,994</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>1,000</td>
<td>ЛМЕТ1/АА</td>
<td>0,000</td>
<td>ЛМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ЛМЕТ1/БХТ</td>
<td>0,000</td>
<td>ЛМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>0,727</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,476</td>
<td>ЛМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>1,000</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>1,000</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ3</td>
<td>0,457</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,247</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>0,068</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,959</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,997</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>0,287</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>1,000</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>1,000</td>
<td>ГХЛР2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,777</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,531</td>
<td>ГХЛР2/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,991</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,925</td>
<td>ГХЛР2/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГА</td>
<td>0,000</td>
<td>ГХЛР3/ГА</td>
<td>0,000</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,300</td>
</tr>
<tr>
<td>ЛХЛР1/АА</td>
<td>0,000</td>
<td>ГХЛР3/АА</td>
<td>0,000</td>
<td>ЛХЛР2/ЛМЕТ2</td>
<td>0,743</td>
</tr>
</tbody>
</table>
5.6.7. Tukey's HSD тестирање Fe$^{2+}$ хелатациона активности испитиваних екстраката

Статистичком анализом IC$_{50}$ вредности Fe$^{2+}$ хелатационе активности испитиваних узорака утврђено је постојање статистички значајне разлике (табела 16). Активност хлороформских екстраката D. blagayana се статистички значајно разликовала од метанолских екстраката исте биљке. Такође, статистички значајна разлика у испољавању активности је утврђена између хлороформских и метанолских екстраката биљке D. alpina. Што се тиче екстраката добијених из биљке D. cneorum, IC$_{50}$ вредности метанолског екстракта листова су се статистички значајно разликовале од вредности добијених за хлороформске екстракте али и од метанолског екстракта гранична исте биљке исте. Поређењем екстраката добијених од различитих биљака, статистички значајна разлика је углавном присутна између метанолских и хлороформских екстраката различитих делова биљака. Изузетак су метанолски екстракти билке D. alpina, чије су се добијене IC$_{50}$ вредности статистички значајно разликовале од метанолских екстраката биљака D. cneorum и D. blagayana као и хлороформски екстракт гранична билке D. blagayana који се разликовао од хлороформског екстракта гранична билке D. cneorum.
Таблица 16. Статистичка анализа резултата Fe^{2+} хелатацисне активности испитиваних узорака

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредности</th>
<th>Узорци</th>
<th>p-вредности</th>
<th>Узорци</th>
<th>p-вредности</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,999</td>
<td>ГМЕТ1/ГХЛР3</td>
<td>0,001</td>
<td>ГХЛР3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР3</td>
<td>0,011</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛХЛР3/ЛМЕТ3</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td>ЛХЛР3/ГХЛР2</td>
<td>0,543</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,922</td>
<td>ГМЕТ1/ГХЛР2</td>
<td>0,664</td>
<td>ЛХЛР3/ЛХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ЛХЛР2</td>
<td>0,014</td>
<td>ЛХЛР3/ГМЕТ2</td>
<td>0,686</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>0,521</td>
<td>ЛХЛР3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>0,037</td>
<td>ГМЕТ1/ЛМЕТ2</td>
<td>0,783</td>
<td>ГМЕТ3/ЛМЕТ3</td>
<td>0,750</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>0,889</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>0,001</td>
<td>ГМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,060</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>0,007</td>
<td>ГМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ1</td>
<td>0,002</td>
<td>ЛМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ1</td>
<td>0,001</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,558</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,009</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>1,000</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,420</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛМЕТ2</td>
<td>0,865</td>
<td>ЛМЕТ3/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,997</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>0,603</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,188</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>0,999</td>
<td>ГХЛР3/ЛМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ЛМЕТ2</td>
<td>0,027</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,277</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,117</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,743</td>
</tr>
<tr>
<td>ЛХЛР1/ЛМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>0,994</td>
<td>ЛХЛР2/ЛМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ1</td>
<td>1,000</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,180</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>0,016</td>
</tr>
</tbody>
</table>
5.6.8. Tukey’s HSD тестирање способности неутралисања OH- радикала испитиваних екстраката

АНОВА тестом IC₅₀ вредности способности неутралисања OH- радикала испитиваних екстраката утврђено је постојање статистички значајне разлике Између екстраката добијених из биљке D. blagayana исту активност су показали екстракти граничца ове биљке, док су се активности осталих екстраката међусобно статистички разликовале (табела 17). Од четири испитивана екстракта биљке D. cneorutm, три екстракта су показала активности које се међусобно нису статистички разликовале, док се IC₅₀ вредност метанолског екстракта листа ове биљке статистички разликовала од IC₅₀ вредности остала три екстракта. Способности неутралисања OH- радикала екстраката биљке D. alpina су се међусобно статистички значајно разликовале на основу добијених IC₅₀ вредности. Није било статистички значајне разлике између испољених активности хлороформских екстраката граничца све три биљне врсте. Такође, добијене IC₅₀ вредности метанолских екстраката листова све три биљне врсте се међусобно нису статистички разликовале. Метанолски екстракт граница и хлороформски екстракт листова биљке D. cneorutm су имали исте активности као хлороформски екстракти граничца биљака D. alpina и D. blagayana. IC₅₀ вредности метанолских екстраката граничца и листова биљке D. alpina као и метанолског екстракта листова биљке D. cneorutm се нису статистички значајно разликовале од вредности добијених за хлороформски екстракт листова биљке D. blagayana. Способност неутралисања OH- радикала метанолског екстракта биљке D. blagayana се није статистички разликовала од активности које су испољили хлороформски екстракти граничца и листова као и метанолски екстракт граничца биљке D.cneorutm.
Табела 17. Статистичка анализа резултата способности неутралисања ОН' радикала узораца

<table>
<thead>
<tr>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
<th>Узорци</th>
<th>p-вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>ГХЛР1/ЛХЛР1</td>
<td>0,000</td>
<td>ГМЕТ1/ГМЕТ2</td>
<td>0,978</td>
<td>ЛХЛР3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ1</td>
<td>1,000</td>
<td>ГМЕТ1/ЛИМЕТ2</td>
<td>0,000</td>
<td>ГМЕТ3/ЛМЕТ3</td>
<td>0,013</td>
</tr>
<tr>
<td>ГХЛР1/ЛИМЕТ1</td>
<td>0,000</td>
<td>ГМЕТ1/ГА</td>
<td>0,000</td>
<td>ГМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР3</td>
<td>1,000</td>
<td>ГМЕТ1/АА</td>
<td>0,000</td>
<td>ГМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ГМЕТ1/БХТ</td>
<td>0,000</td>
<td>ГМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ3</td>
<td>0,000</td>
<td>ЛМЕТ1/ГХЛР3</td>
<td>0,000</td>
<td>ГМЕТ3/ЛИМЕТ2</td>
<td>0,114</td>
</tr>
<tr>
<td>ГХЛР1/ЛИМЕТ3</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР3</td>
<td>0,000</td>
<td>ГМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГХЛР2</td>
<td>0,196</td>
<td>ЛМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td>ГМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛХЛР2</td>
<td>0,152</td>
<td>ЛМЕТ1/ЛИМЕТ3</td>
<td>0,468</td>
<td>ГМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГМЕТ2</td>
<td>0,796</td>
<td>ЛМЕТ1/ГХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ3/ГХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ЛИМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛХЛР2</td>
<td>0,000</td>
<td>ЛМЕТ3/ЛХЛР2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ1/ГМЕТ2</td>
<td>0,000</td>
<td>ЛМЕТ3/ГМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ГХЛР1/АА</td>
<td>0,000</td>
<td>ЛМЕТ1/ЛИМЕТ2</td>
<td>0,086</td>
<td>ЛМЕТ3/ЛИМЕТ2</td>
<td>1,000</td>
</tr>
<tr>
<td>ГХЛР1/БХТ</td>
<td>0,000</td>
<td>ЛМЕТ1/ГА</td>
<td>0,000</td>
<td>ЛМЕТ3/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР1</td>
<td>0,000</td>
<td>ЛМЕТ1/АА</td>
<td>0,000</td>
<td>ЛМЕТ3/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР1</td>
<td>0,002</td>
<td>ЛМЕТ1/БХТ</td>
<td>0,000</td>
<td>ЛМЕТ3/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР3</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР3</td>
<td>0,000</td>
<td>ГХЛР2/ЛХЛР2</td>
<td>1,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР3</td>
<td>0,000</td>
<td>ГХЛР3/ГМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ГМЕТ2</td>
<td>0,999</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ3</td>
<td>0,874</td>
<td>ГХЛР3/ЛИМЕТ3</td>
<td>0,000</td>
<td>ГХЛР2/ЛИМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛИМЕТ3</td>
<td>0,508</td>
<td>ГХЛР3/ГХЛР2</td>
<td>0,328</td>
<td>ГХЛР2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ЛХЛР2</td>
<td>0,263</td>
<td>ГХЛР2/АА</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ЛХЛР2</td>
<td>0,000</td>
<td>ГХЛР3/ГМЕТ2</td>
<td>0,922</td>
<td>ГХЛР2/БХТ</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГМЕТ2</td>
<td>0,000</td>
<td>ГХЛР3/ЛИМЕТ2</td>
<td>0,000</td>
<td>ЛХЛР2/ГМЕТ2</td>
<td>0,996</td>
</tr>
<tr>
<td>ЛХЛР1/ЛИМЕТ2</td>
<td>0,967</td>
<td>ГХЛР3/ГА</td>
<td>0,000</td>
<td>ЛХЛР2/ЛИМЕТ2</td>
<td>0,000</td>
</tr>
<tr>
<td>ЛХЛР1/ГА</td>
<td>0,000</td>
<td>ГХЛР3/АА</td>
<td>0,000</td>
<td>ЛХЛР2/ГА</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>ЛХЛР1/АА</td>
<td>ГХЛР3/БХТ</td>
<td>ЛХЛР3/ГМЕТ3</td>
<td>ГМЕТ2/ЛМЕТ2</td>
<td>ГМЕТ1/ГМЕТ3</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ЛХЛР1/БХТ</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ1</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ГХЛР3</td>
<td>1,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ЛХЛР3</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ГМЕТ3</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ЛМЕТ3</td>
<td>0,000</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ГХЛР2</td>
<td>0,478</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>ГМЕТ1/ЛХЛР2</td>
<td>0,398</td>
<td></td>
<td>0,000</td>
<td>0,000</td>
<td></td>
</tr>
</tbody>
</table>
6. Дискусија
Примена биљних лекова у альтернативној медицини све је више присутна у свету и стиче све већу популарност у земљама у развоју [163]. До сада су испитиване многе биолошке активности бројних биљних врста. Једињења изолована из ових биљака нашла су примену у альтернативној терапији, било на директан начин, било као модели за добијање нових синтетичких супстанци [164]. Иако лековите биљке и њихови конституенти могу поседовати биолошке активности, потенцијална токсичност ових биоактивних супстанци није у потпуности утврђена [163]. Самим тим, употреба препарата биљног порекла би требало бити под контролом здравствених радника, како би се омогућила ефикасност и здравствена безбедност. Нерационална и погрешна употреба различитих биљних приправака може довести до одсуства биолошких ефеката или чак до токсичних ефеката, који могу бити и леталног исхода [166].

Циљ овог истраживања је испитавање хемијског састава, као и антиоксидативне и антимикробне активности екстраката три биљне врсте из рода Daphne (Daphne blagayana L., Daphne cneorum L. и Daphne alpina L.). Рад је обухватио одређивање укупних фенолних и флавоноидних једињења спектрофотометријском методом, као и идентификацију најзаступљенијих секундарних метаболита применом HPLC-UV методе. У наставку истраживања испитивана је антиоксидативна активност у in vitro условима (одређивање укупне антиоксидативне активности, одређивање DPPH „скевинцер” активности, одређивање инхибиције липидне пероксидације, Fe²⁺ хелатациона активност и одређивање антиоксидативне активности на нивоу хидроксил радикала). Посебан део истраживања био је усмерен на испитивање антимикробне активности.

Испитиване врсте, Daphne blagayana L., Daphne cneorum L. и Daphne alpina L., су прикупљене са различитих локалитета на подручју Србије. Екстракти су припремљени одвојеном екстракцијом граничца и листова помоћу растварача различитих поларности (метанол и хлороформ). Резултати приноса екстракције су показали да је принос добијених екстраката по граму дроге био већи код метанолских екстраката (19,78-27,46 g/100g дроге) у односу на екстракте добијене екстракцијом помоћу хлороформа (2,08-7,02 g/100g дроге).

Испитивањем укупног фенолног садржаја, који се у анализираним узорцима кретао од 68,77±0,95 mg GA/g до 90,26±0,69 mg GA/g, утврђен је висок садржај фенола у екстрактима све три врсте. Највећи садржај фенола је имао хлороформски екстракт
граничца врсте *D. Blagayana*, а најмањи метанолни екстракт граничца врсте *D. cneorum*. Количина фенолних једињења у екстрактима у великој мери зависи од начина екстракције и поларности раствараца [167].

Резултати одређивања укупних флавоноида указују на висок садржај ових једињења у испитиваним екстрактима. Садржај укупних флавоноида се кретао од 24,67±0,35 mg RU/g до 35,24±0,55 mg RU/g, при чему је највећи флавоноидни садржај имао хлороформски екстракт граничца *D. blagayana*, а најмањи хлороформски екстракт граничца *D. cneorum*. Феноли и флавоноиди показују различите биолошке активности, међу којима су изражене антиоксидативна и антимикробна активност.

Уколико се упореде екстракти добијени од листова све три биљне врсте, може се уочити да је садржај укупних фенола био већи код екстраката добијених екстракцијом метанолом као растварачем. Истраживањем спроведеним од стране Cottigli и сар. (2001), које је између осталог обухватало и одређивање укупног фенолног састава екстраката листова врсте *D. gnidium*, добијени су слични резултати [115]. И у овој студији, укупни фенолни садржај метанолског екстракта листова (157,47 mg GA/g) је био већи од укупног фенолног садржаја хлороформског екстракта листова (104,41 mg GA/g). Једноставним процедурама, описаним у овом раду, као што су таложење, наизменично растварање у растварацима различите поларности, могуће је добити фракције екстраката које су богатије фенолним и флавоноидним једињењима од екстракта добијених класичним методама екстракције [115].

Досадашња истраживања су показала да нека фенолна и флавоноидна једињења испољавају антиоксидативну активност у биолошким системима, углавном услед њихових редокс особина, што може имати битну улогу у апсорпцији и неутрализацији слободних радикала при чему смањују негативно дејство синглетног и триплетног кисеоника или врше разградњу пероксида [168]. Механизам дејства флавоноида у смањењу продукције и неутрализације слободних радикала, на чему се заснива њихово антиоксидативно дејство, јесте познат, па је интересовање за даље проучавање ових једињења велико [169]. Способност неутрализације слободних радикала чини флавоноидна једињења значајним за терапеутску или профилактичку примену, нпр. након инфекције, запаљења, опекотина или повреда услед излагања зрачењу [170]. Антиоксидативна активност фенолних киселина је значајна у одбрамбеним механизмах биолошких система, али и за стабилност хрane. Новија
истраживања су показала да неки полифенолни биљни конституенти показују много јачу активност од витамина C и E [170, 76]. Оvakви резултати, добијени у in vitro истраживањима указују и на значајан заштитни антиоксидативни потенцијал in vivo.

Флавоноидна једињења, у организму се у малој количини апсорбују у дигестивном тракту у облику агликона или гликозида. Највећа количина флавоноидних једињења под дејством интестиналне флоре подлеже различитим, ензимским реакцијама. Те реакције обухватају хидролизу, цепање хетероцикличног прстена који садржи кисеоник, дехидроксилацију и декарбоксилацију, при чему као један од продуката настаје фенолна киселина [172]. Фенолне киселине, настале из флавоноидних прекурсора, могу се апсорбовати из црева, потвргнути коњугацији и орто-метиловању у јетри, а потом уђи у крвоток где испољавају своју антиоксидативну улогу [173]. Ово је указало на потребу даљег испитивања наших узорака и извођења тестова процене антиоксидативне и антимикробне активности. С обзиром да сви испитивани екстракти испољавају биолошка дејства, може се претпоставити да и поларне и неполарне компоненте екстраката утичу на испољавање биолошких активности. Фенолна једињења су снажни антиоксиданси и имају велики потенцијал у спречавању оштећења ћелија изазваних реакционару кисеоничним врстама и на тај начин штиту организам од кардиоваскуларних, канцерогених и осталих обољења [169, 174, 175]. Ипак, допринос појединачних компоненти укупној антиоксидативној заштити је тешко утврдити. Испољена активност екстраката може бити резултат синергистичког дејства различитих једињења. На пример, Fuhrman и сар. (2000) су својим истраживањем утврдили боље антиоксидативно дејство смеше ликопена и других биљних полифенолних једињења у поређењу са утицајем сваког појединачног једињења [176].

Биљке су богат извор природних антиоксиданаса у које спадају токофероли, витамин C, каротеноиди и биљни феноли. Истраживањима је показана и веза антиоксидативне активности природних производа са количином присутних фенолних једињења [177-179]. Биљни полифеноли се не сматрају увек правим антиоксидантима, али је у многим in vitro истраживањама установљен антиоксидативни потенцијал фенолних материја у воденом екстракту, "скевинцер" радикала, као и појачање резистентности према оксидацији липопротеина мале густине, који указују на патогенезу у случају коронарних болести [178]. Сматра се да се део антиоксидативног потенцијала многих
врсту биљака, воћа и бобица може приписати полиifenолним компонентама. Способност мономерних фенола да делују као антиоксиданси зависи од степени конкугације, броја и распорода супституенета (функционалних група) и молекулске масе [179]. Пошто је потврђено присуство фенолних и флавоноидних молекула у нашим екстрактима, постављен је циљ испитивања антиоксидативне активности екстраката. Антиоксидативни профили екстраката одређени су преко неколико стандардних метода.

Највећи укупни антиоксидативни капацитет показује хлороформски екстракт гранчица биљке D. blagayana (78,45 μg AA/g). Овај екстракт, у односу на остале екстракте испитиване у овом раду, је имао највећи фенолни и флавоноидни садржај, што указује на директну пропорционалност хемијског састава и испољене активности.

Једињења која могу да донирају протоне или електроне DPPH· радикалу могу се сматрати антиоксидансима и „сакупљачима” слободних радикала. Такође, уколико једињења имају способност неутралисања OH· радикала, генерисаних у in vitro моделу представљају потенцијално добре антиоксидансе, који могу своју активност испољити и у in vivo моделима. Способност неутралисања OH· радикала као DPPH· „скевинцер” активност испитиваних екстраката приказани су на хистограмима 7-9. Добијене IC_{50} вредности DPPH· „скевинцер” активности екстраката су се кретале у опсегу од 20,95 μg/ml до 25,24 μg/ml. Уколико се међусобно пореде екстракти добијени од исте биљке (хлороформски и метанолски екстракти гранчица и листова) може се запазити да је код сваке биљке најслабију активност показао метанолски екстракт листова, док су најбољу активност показали хлороформски екстракти гранчица, са изузетком екстраката биљке D. blagayana где је најбољу активност показао хлороформски екстракт листова. Испитивани екстракти су показали и добру антиоксидативну активност проценењу преко способности неутралисања OH· радикала (IC_{50}=80,56 μg/ml – 99,11 μg/ml). И у овом случају, најслабије активности су показали метанолски екстракти листова, са изузетком хлороформског екстракта листова D. alpina, док су најбољу активност испољили екстракти гранчица (хлороформски за врсте D. blagayana и D. alpina и метанолски врсте D. cneorum).

Ростојање разлика у способности неутралисања слободних радикала (DPPH· и OH·) и одсуство потпуне корелације са количиним укупних фенола и флавоноида, вероватно је резултат присуства једињења из других група секундарних метаболита, која могу
испопићити наведене активности као и међусобног синергизма међу конституентима екстраката.

Испитивани екстракти су показали и активност инхибиције пероксидације липида као и антиоксидантну хелирајућу Fe^{2+} активност. Потенцијал инхибиције липидне пероксидације (ЛП) кретао се у опсегу IC_{50} вредности од 26,79 µg/ml до 37, 17 µg/ml, при чему су, као и код претходних модела испитивања антиоксидантне активности, најјаче активности испољили екстракти граница (хлороформски D. blagayana и D. cneorum и метанолски D. alpina). Слични резултати су добијени и у процени Fe^{2+}хелатационе (IC_{50}=21,57 - 45,45), где хлороформски екстракти граница показују најбољу активност, сем у случају екстраката врсте D. cneorum, где је најбољу активност испопићило метанолски екстракт граница.

С обзиром на појаву све веће резистенције микроорганизама према конвенционалним антибиотицима, један од најзначајнијих циљева истраживачких тимова широм света је испитивање биљака и дефинисање хемијских састојака који испољавају антимикробну активност. Као пример оваквих тврдњи стоји чињеница да је на различитим скуповима посвећеним проучавањима лековитог биља, једна од главних тема "антимикробна активност природних производа". На пример, на Конгресу Светске секције за испитивање лековитог биља (2-7 септембар 2007., Грац, Аустрија) презентовано преко 230 експерименталних радова у оквиру секције Natural Products with Antimicrobial Activity [180]. Ипак, највећи број радова се односи на in vitro испитивања, што је заиста далеко од званичне потврде терапијске ефикасности.

Секундарни метаболити присутни у биљкама могу садржати различите функционалне групе. Разлика у антимикробној активности појединих компонената је следећа: феноли > алдехиди > кетони > алкохоли > етри > угљоводоници [181]. Биљке поседују скоро неограничену способност синтезе хемијски структурно различитих молекула, насталих различитим биосинтетичким путевима. Биосинтеза ових супстанци представља механизам одбране и одговор биљке на напад биљних патогена и појаву инфекције (фитоалексини). Ако у биљци имају овакву улогу, савим је јасно, да ће се ова способност једињења испољити и у in vitro условима. Ипак, као што је и напоменуто, екстраполација ка in vivo ефикасности није тако једнозначна, па зато и нема пуно биљних лекова потврђене ефикасности и оправдане примене код инфективних обољења.
Последњих деценија дефинисани су најважнији секундарни биљни метаболити који поседују антимикробну активност [182]. Ови састојци су одговорни за одређену делотворност биљних дрога. Потврђено је да антимикробну активност поседују бројни полифенолни састојци биљака (једноставни полифеноли, фенолне киселине, лигнани, полипептиди, полиациетилени, масне киселине па чак и неки једноставни шећери или органске кисeline) [183-186]. Фармаколошко деловање фенолних једињења повезано је са хемијском структуром њихових молекула. Пошто постоји велики број различитих хемијских структура ових једињења, веома је широк и спектар њихове активности и терапијске примене. Генерално посматрано фенолна једињења се не одликују снажним, фармаколошким деловањем, па је употреба дрога, које их садрже, најделотворнија у сврху профилаксе, лечења почетних фаза болести или као допуна медикаментозној терапији [183].

Фенолне компоненте токсично делују на микроорганизме, а механизам деловања обухвата инхибицију оксидованих компонената, као и могућу реакцију са сулфхидрилним групама кроз више неспецифичних реакција са протеинима.

Микродилуционом методом се одређује минимална инхибиторна концентрација, а то је најнижа концентрација антибиотика (у овом случају, екстракта биљке) која спречава раст микроорганизма. Антимикробна активност се одређује у in vitro условима да би се одредила: делотворност антибиотика у раствору, концентрација у телесним течностима и ткивима и осетљивост тестираног микроорганизма у in vitro условима.

Резултати приказани у табелама 7-9 показују антимикробну активност екстраката испитиваних Daphne врста, чије су се вредности минималних инхибиторних концентрација кретале у опсегу 15,62-125 μg/mL.

Што се тиче антибактеријске активности, екстракти испитиваних биљних врста су испољили различите активности. Антибактеријске активности су испитиване на грам позитивним бактеријама. S. aureus је била најосетљивија на хлороформски екстракт листа врсте D. blagayana (MIC=15,62 μg/mL). Метанолски екстракти граници врсте D. blagayana и D. cneorum су испољили најјачу активност према K. pneumoniae. Најнижа вредност минималне инхибиторне концентрације (15,62 μg/mL) према P. mirabilis забележена је код метанолског екстракта граница врсте D. cneorum и хлороформског екстракта листова D. blagayana. Хлороформски екстракти листова врсе D. alpina са
показали јаку активност према B. subtilis (MIC=15,62 µg/mL). Активност са истом вредношћу минималне инхибиторне концентрације према овој бактерији испољио је и хлороформски екстракт листова биљке D. cneorum. Према P. vulgaris најбољу активност су исполнили хлороформски екстракт граничца D. cneorum и метанолски екстракт листова D. alpina.

Поред антибактеријске активности, испитивана је и антифунгална активност према гљивичним сојевима Candida albicans и Aspergillus niger. Најбољу антифунгалну активност испољили су хлороформски екстракт листова и метанолски екстракт граничца биљке D. alpina према C. albicans, као и метанолски екстракт граничца D. blagayana према A. niger са минималном инхибиторном концентрацијом, која је износила 15,62 µg/mL.

Резултати HPLC анализе испитиваних екстраката указују на присуство неколико класа секундарних метаболита. На основу изгледа UV спектара раздвојених јединења, може се закључити да се углавном ради о фенолним и флавоноидним секундарним метаболитима. Компаративом ретенционих времена и UV спектара стандарда са ретенционим временима и UV спектрима јединења присутним у екстрактима идентификована су три јединења: 7,8-дихидроксикумарин (дафнетин), 7-хидроксикумарин (умбелиферон) и 4-хидроксибензойна киселина. Дафнетин и 4-хидроксибензойна киселина су идентификовани у екстрактима све три биљне врсте. Кумарински дериват умбелиферон, идентификован је у екстрактима врсте D. alpina, док у екстрактима врста D. blagayana и D. cneorum његово присуство није потврђено. Интензитети сигнала који потичу од дафнетина и 4-хидроксибензойне киселине, идентификованих у свим испитиваним екстрактима су се разликовали, с тим што се уочава да је сигнал од дафнетина у свим хлороформским екстрактима био већег интензитета од сигнала који потиче од 4-хидроксибензойне киселине. Са друге стране, у свим метанолским екстрактима однос интензитета сигнала ова два јединења је супротан (сигнал од дафнетина је био мањег интензитета). Овакви подаци указују на утицај раставара различите поларности на екстракцију појединих компоненти из узорака. 4-Хидроксибензойна киселина је поларнији молекул од дафнетина, па је и интензитет њеног сигнала интензивнији у хроматограмима метанолских екстраката, што индикује на њену већу заступљеност у овим екстрактима.
Дафнетин је од раније познат као метаболит рода *Daphne* и изолован је из неколико врста овог рода. Досадашња научна истраживања су потврдила да овај кумарински метаболит поседује веома разнообразне активности, укључујући антимикробну, антиоксидантну, неуропротективну, антималаријску, антикоагулантну и имуномодулаторску активност [187-189]. Што се тиче застапљености антимикробне активности, потврђено је да дафнетин делује на грам позитивне бактерије. Алкилимањем дафнетина до 7-O-метил деривата, диметил деривата или диалил деривата губи се антимикробна активност, али са друге стране, алкил супституисани деривати показују фунгистатичну активност. За разлику од алкилимања, ацетиловање дафнетина не резултира губитком антимикробне активности, већ насупрот, ацетиловани деривати инхибирају раст већег броја бактерија [190]. С обзиром да је претходним истраживањима потврђена његова антиоксидативна и антимикробна активност, несумњиво је, да овај кумарински дериват у значајној мери доприноси испољеним активностима екстрактима биљака које су обухваћене овим радом. Поред дафнетина, у свим екстрактима је потврђено и присуство 4-хидроксибензоеве киселине. То је фенолна киселина, која такође испољава антимикробну и снажну антиоксидативну активност испитану преко више модела [191, 192]. У екстрактима врсте *D. alpina* је потврђено присуство 7-хидроксикумарина (умбелиферона). То је кумарински дериват за који је потврђено да поседује фармаколошку активност. *In vivo* студија спроведена на зечевима са индукуваним дијабетесом, показала је да умбелиферон побољшава антиоксидативни статус, враћањем маркера липидне пероксидације, неензимских и ензимских антиоксиданаса на нормалне вредности [193]. Поред антиоксидативне активности, испољава и антимикробно, аналгетско и хипогликемијско дејство [190, 194].
7. ЗАКЉУЧЦИ
У оквиру ове докторске дисертације извршена је фитохемијска анализа метанолских и хлороформских екстраката гранчица и листова биљних врста *Daphne blagayana* L., *Daphne cneorum* L. и *Daphne alpina* L., као и испитивање антиоксидативних и антимикробних активности ових екстраката. На основу добијених резултата могу се извести следећи закључци:

- Испитивањем садржаја укупних фенола утврђено је да сви екстракти имају висок садржај ових јединења. Садржај укупних фенола зависи од поларности растварача коришћеног за екстракцију, дела биљке из које је добијен екстракт (лист или гранчица) као и испитуване *Daphne* врсте. Ове вредности су износила од 68,77±0,95 mg EGA/g до 90,26±0,69 mg EGA/g. Највећи садржај укупних фенола имају хлороформски екстракт гранчица *D. blagayana* (90,26±0,69) и метанолски екстракт гранчица *D. alpina* (88,98±1,05). Наведени екстракти се међусобно статистички значајно не разликују по садржају укупних фенола (p>0,05).

- Испитивани екстракти садрже значајне количине флавоноида, чије су вредности крећу од 24,67±0,35 mg ERU/g до 35,24±0,55 mg ERU/g . Највећи садржај укупних флавоноида имају хлороформски екстракт гранчица *D. blagayana* (35,24±0,55) и *D. alpina* (34,65±0,89), као и хлороформски екстракт листова *D. cneorum* (34,23±0,89). Ова три екстракта се међусобно статистички значајно не разликују (p>0,05).

- Укупан антиоксидативни капацитет испитиваних екстраката износио је од 68,98 mg AA/g до 78,45 mg AA/g. Највећи антиоксидативни капацитет имао је хлороформски екстракт гранчица *D. blagayana* који се статистички значајно разликовао од осталих испитиваних екстраката (p>0,05). Испољена активност је пропорционална високом садржају укупних фенола и флавоноида, који је утврђен код наведеног екстракта.

- Испитивани екстракти су показали способност неутрализације OH- радикала са IC₅₀ вредностима од 80,56 μg/g до 99,11μg/g. Генерално, екстракти листова све три врсте су показали бољу активност од екстраката гранчица. Најбољу активност показује хлороформски екстракт листова *D. alpina* (IC₅₀=80,56 μg/g)
Испитивани екстракти испољавају активност у неутрализацији DPPH˙ радикала са IC$_{50}$ вредностима изнад 20 μg/g. Најмања IC$_{50}$ вредност одређена је за метанолски екстракт листова D. blagayana (20,95 μg/g).

Потенцијал инхибиције липидне пероксидације испитиваних екстраката креће се у опсегу IC$_{50}$ вредности од 26,79 μg/g до 37,17 μg/g. IC$_{50}$ вредности мање од 30 μg/g показују екстракти листова D. alpina и метанолски екстракти граници и листова D. cneorum.

Испитивани екстракти су испољили Fe$^{2+}$ хелатациону активност са IC$_{50}$ вредностима од 21,57 μg/g до 45,91 μg/g. Најбоље активности испољавају метанолски екстракти граница и листова D. cneorum са IC$_{50}$ вредностима 21,57 μg/g, односно 23, 15 μg/g. Ова два екстракта се међусобно статистички не разликују по испољеним активностима (p>0,05). Са друге стране, ова два екстракта се од осталих екстраката статистички значајно разликују по испољеној Fe$^{2+}$ хелатационој активности (p<0,05).

HPLC-UV анализом испитиваних екстраката, потврђено је да екстракти садрже секундарне метаболите из група фенола и кумарина, међу којима доминирају два кумаринска деривата (дафнетин и умбелиферон) и једна фенолна киселина (4-хидроксибензоева киселина).

Дафнетин и 4- хидроксибензоева киселина су присутни у испитиваним екстрактима све три Daphne врсте, док је умбелиферон присутан само у екстрактима врсте D. alpina.

Антимикробна активност испитиваних екстраката, изражена преко минималне инхибиторне концентрације, кретала се у опсегу од 15,62 до 125 μg/ml. Најбољу антифунгалну активност (MIC=15,62 μg/ml) испољавају хлороформски екстракт листова и метанолски екстракт граници врсте D. cneorum (према C. albicans) и метанолски екстракт граници врсте D. blagayana (према A. niger).
На основу свега изнетог, може се закључити да три испитане врсте рода *Daphne* садрже значајне количине фенолних и флавоноидних једињења и испољавају добру антимикробну и антиоксидативну активност. Њихова активност је специфична за сваку врсту и зависи од хемијског састава екстракта, који је специфичан за део биљке који је испитиван и примењени растварач. Будућа истраживања би требало да иду у правцу изоловања биоактивних компонената, као и испитивања биолошких активности у *in vivo* условима. Добијени резултати су показали да биљке из рода *Daphne* могу представљати извор нових, природних, фармаколошких активних једињења, и да могу наћи потенцијалну примену у фармацеутској, козметичкој и прехранбеној индустрији.
8. ЛИТЕРАТУРА

64. Catalá A. An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. The international journal of biochemistry & cell biology 2006; 38(9): 1482-1495.

68. Repetto M, Boveris A. Bioactivity of sesquiterpenes: compounds that protect from alcohol-induced gastric mucosal lesions and oxidative damage. Mini reviews in medicinal chemistry 2010; 10(7): 615-623.

180. Society for Medicinal Plant Research. International congress and annual meeting of the Society for Medicinal Plant Research: September 2-6, 2007, Graz, Austria. Thieme.

