Јелена Тошић Пајић

ДИЈАГНОСТИЧКЕ ПЕРФОРМАНСЕ И ЕКОНОМСКИ АСПЕКТИ ТЕСТОВА ЗА ДЕТЕКЦИЈУ

Chlamydia-e trachomatis

Крагујевац, 2018.
Јелена Тошић Пајић

ДИЈАГНОСТИЧКЕ ПЕРФОРМАНСЕ И ЕКОНОМСКИ АСПЕКТИ ТЕСТОВА ЗА ДЕТЕКЦИЈУ

Chlamydia-e trachomatis

ДОКТОРСКА ДИСЕРТАЦИЈА

Ментор: доц. др. Марија Шорак

Крагујевац, 2018.
3. МАТЕРИЈАЛ И МЕТОДЕ .. 37
 3.1. Популација која се истражује ... 37
 3.2. Узорковање .. 37
 3.3. Скрининг тестови .. 39
 3.3.1. Тест директне имунофлуоресценције за квалитативно одређивање хламидијалних антитела (DIF) ... 39
 3.3.2. Брзи имунохроматографски тест за квалитативно одређивање хламидијалних антитела .. 40
 3.3.3. Одређивање серумског нивоа антитела на хламидијални MOMP антген 42
 3.4. Дијагностички тест RT-PCR ... 44
 3.4.1. Припрема узорака и реагенаса .. 44
 3.4.2. Протокол .. 45
 3.4.3. Амплификација .. 46
 3.4.4. Анализа података ... 46
 3.4.5. Интерпретација резултата .. 46
 3.5. Економска анализа .. 48
 3.6. Статистичка обрада података .. 49
4. РЕЗУЛТАТИ ... 52
 4.1. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом других дијагностичких тестова (DIF, BT, ELISA)........... 52
 4.1.1. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом теста за детекцију хламидијалних антитела (DIF, BT) 53
 4.1.2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgA и IgG антитела на хламидијални MOMP антген... 56
 4.1.3. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом тестова – позитивна два или више теста, позитиван било који тест ... 59
 4.1.3.1. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом теста – позитивна два или више теста 60
 4.1.3.2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом теста – позитивна два или више теста 64
 4.2. Дијагностичка ефикасност тестова ... 68
 4.2.1. Дијагностичка ефикасност појединачних тестова (DIF, BT, ELISA) 68
 4.2.2. Дијагностичка ефикасност комбинације тестова - „позитивна два или више теста“(.. 70
4.2.3. Дијагностичка ефикасност комбинације тестова - „позитиван било који тест“ 72

4.3. ROC анализа серумског нивоа IgA и IgG антитела на хламидијални МOMP антиген ... 75

4.4. Економска анализа .. 82

5. ДИСКУСИЈА .. 87

6. ЗАКЉУЧЦИ .. 100

7. ЛИТЕРАТУРА .. 102
СПИСАК СЛИКА

Слика 6 Тест директне имунофлуоресценције за квалитативно одређивање хламидијалних антигена – позитиван налаз .. 40

Слика 7 Брзи имунохорматографски тест за квалитативно одреживање хламидијалних антигена: А – негативан налаз; Б – позитиван налаз ... 41

Слика 9. RT PCR тест – квалитативно откривање ДНК C. trachomatis позитиван налаз – Ст вредност присутна на FAM каналу .. 47

СПИСАК ГРАФИКОНА

Графикон 1. Упоредни резултати тестова за детекцију C. trachomatis 52

Графикон 2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним тестом директне имунофлуоресценције.. 54

Графикон 3. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним брзим тестом ... 55

Графикон 4. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употрбом ELISA теста за детекцију серумског нивоа IgA антитела на хламидијални MOMP антиген ... 57
Графикон 5. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgG антитела на хламидијални MOMP антиген..58

Графикон 6. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“...61

Графикон 7. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“...63

Графикон 8. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитиван било који тест“..65

Графикон 9. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитиван било који тест“..67

Графикон 10. ROC крива серумског нивоа IgA антитела на хламидијални MOMP антиген ..76

Графикон 11. ROC крива серумског нивоа IgG антитела на хламидијални MOMP антиген ..78

СПИСАК ШЕМА

Шема 1. Сценарио дијагностике и лечења хламидијалне инфекције генитуорунарног тракта у условима рутинске клиничке праксе у примарној здравственој заштити..........48

СПИСАК ТАБЕЛА

Табела 1. Формуле за израчунавање параметара дијагностичке ефикасности...............50

Табела 2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним тестом директне имунофлуоресценције...55

Табела 3. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатимадобијеним брзим тестом ..56

Табела 4. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgA антитела на хламидијални MOMP антиген ...58

Табела 5. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgG антитела на хламидијални MOMP антиген ...59

Табела 6. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“...62

Табела 7. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“...64
Табела 8. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивни било који тест“...66

Табела 9. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивни било који тест“...68

Табела 10. Дијагностичка ефикасност појединачних тестова (DIF, BT, ELISA) за детекцију C. trachomatis ..69

Табела 11. Дијагностичка ефикасност комбинације тестова „позитивна два или више теста” за детекцију C. trachomatis ...71

Табела 12. Дијагностичка ефикасност комбинације тестова "позитиван било кој тест" за детекцију C. trachomatis ..73

Табела 13. Упоредна анализа резултата тестова слагања и параметара дијагностичке ефикасности појединачних тестова и комбинација тестова „позитивна два или више теста”, позитиван било који тест ...75

Табела 14. Дијагностичка ефикасност IgA антитела на хламидијални МОМ антиген на основу Cut-off вредности препоручених од стране произвођача теста ..77

Табела 15. Дијагностичка ефикасност IgA антитела на хламидијални МОМ антиген на основу Cut-off вредности дефинисаних ROC анализом...77

Табела 16. Дијагностичка ефикасност IgG антитела на хламидијални МОМ антиген на основу Cut-off вредности препоручених од стране произвођача теста ..79

Табела 17. Дијагностичка ефикасност IgG антитела на хламидијални МОМ антиген на основу Cut-off вредности дефинисаних ROC анализом ..79

Табела 18. Дијагностичка ефикасност IgA+IgG (позитивна оба теста) антитела на хламидијални МОМ антиген на основу Cut-off вредности препоручених од стране произвођача теста ...80

Табела 19. Дијагностичка ефикасност IgA+IgG (позитивна оба теста) антитела на хламидијални МОМ антиген на основу Cut-off вредности дефинисаних ROC анализом .80

Табела 20. Дијагностичка ефикасност IgA/IgG (позитиван било који тест) антитела на хламидијални МОМ антиген на основу Cut-off вредности препоручених од стране произвођача теста ...81

Табела 21. Дијагностичка ефикасност IgA/IgG (позитиван било који тест) антитела на хламидијални МОМ антиген на основу Cut-off вредности дефинисаних ROC анализом .81

Табела 22. Економска анализа ...83

Табела 23. Анализа здравствених трошкова за иницијалну микробиолошку дијагностику и фармакотерапију циљне популације оболелих од генитоурниарне хламидијалне инфекције у Србији ..86
<table>
<thead>
<tr>
<th>СКРАЋЕНИЦА</th>
<th>ЕНГЛЕШКА СМисЛА</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Аденозин три фосфат</td>
</tr>
<tr>
<td>BT</td>
<td>Брзи имунохроматографски тест</td>
</tr>
<tr>
<td>C-</td>
<td>Негативна контрола екстракције</td>
</tr>
<tr>
<td>C+</td>
<td>Позитивна контрола амплификације</td>
</tr>
<tr>
<td>cHSP60</td>
<td>Хламидијални стрес протеин од 60-kDa (og en. chlamydial heat shock protein - cHSP60)</td>
</tr>
<tr>
<td>CPAF</td>
<td>Хламидијални протеаза/протеазом налик фактор активности (og en. Chlamydial protease/proteasome – like activity factor)</td>
</tr>
<tr>
<td>DIF</td>
<td>Тест директне имунофлуоресценције</td>
</tr>
<tr>
<td>ET</td>
<td>Елементарно тело (og en. Elementary Body)</td>
</tr>
<tr>
<td>GAG</td>
<td>Глукозаминогликан (Glicosaminoglycan)</td>
</tr>
<tr>
<td>IC</td>
<td>Интерна контрола</td>
</tr>
<tr>
<td>LCR</td>
<td>Ланчана реакција лигазе (og en. ligase chain reaction)</td>
</tr>
<tr>
<td>LGV</td>
<td>Лимфогранулома венерум</td>
</tr>
<tr>
<td>LPS</td>
<td>Липополисахарида</td>
</tr>
<tr>
<td>MOMP</td>
<td>Главни протеин спољашње мембране (og en. Major Outer Membrane Protein)</td>
</tr>
<tr>
<td>NAAT-s</td>
<td>Тестови амплификације нуклеинских киселина</td>
</tr>
<tr>
<td>NCA</td>
<td>Негативна контрола амплификације</td>
</tr>
<tr>
<td>NPV</td>
<td>Негативна предиктивна вредност</td>
</tr>
<tr>
<td>ORA</td>
<td>Укупно слагање (Overall Agreement)</td>
</tr>
<tr>
<td>PBS</td>
<td>Фосфатни пуфер</td>
</tr>
<tr>
<td>PCR</td>
<td>Ланчана реакција полимеризације (og en. polimerase chain reaction)</td>
</tr>
<tr>
<td>PID</td>
<td>Пелвична инфламаторна болест (og en. Pelvic Inflammatory Desease)</td>
</tr>
<tr>
<td>Pmp</td>
<td>Полиморфни мембрански протеини (og en. Polymorphic Membrane Proteins)</td>
</tr>
<tr>
<td>PmpD</td>
<td>Полиморфни мембрански протеин Д (og en. polymorphicmembrane protein D)</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PorB</td>
<td>Порински протеин Б</td>
</tr>
<tr>
<td>PPV</td>
<td>Позитивна предиктивна вредност</td>
</tr>
<tr>
<td>RC1</td>
<td>Chlamydia cell reagenс</td>
</tr>
<tr>
<td>RMF</td>
<td>Течност за фиксирање</td>
</tr>
<tr>
<td>ROC</td>
<td>(Receiver Operating Characteristic Curve)</td>
</tr>
<tr>
<td>RT</td>
<td>Ретикуларно тело (og en. Reticulate Body)</td>
</tr>
<tr>
<td>RT PCR</td>
<td>Ланчана реакција полимеризације у реалном времену (og en. Real Time Polimerase Chain Reaction)</td>
</tr>
<tr>
<td>SDA</td>
<td>Изотермална амплификација заменом ланаца (og en. strand displacement amplification)</td>
</tr>
<tr>
<td>TARP</td>
<td>Транслюсирајући актин регрутујући фосфопротеин (og en. Translocated Aaactin-recruiting Phosphoprotein)</td>
</tr>
<tr>
<td>TFI</td>
<td>Тубарни фактор инфертитете</td>
</tr>
<tr>
<td>TMA</td>
<td>Транскрипцијом посредована амплификација (og en. transcription-mediated amplification)</td>
</tr>
<tr>
<td>TMB</td>
<td>Тетраметилбензидин</td>
</tr>
<tr>
<td>TTSS</td>
<td>Секрециони систем тип III (og en. Type III secretion system)</td>
</tr>
</tbody>
</table>
1. УВОД

Извештај Светске здравствене организације указују на повећан број полно преносивих бактеријских инфекција широм света у последњих неколико година, при чему је Chlamydia trachomatis један од водећих патогена. Инфекција углавном погађа младе сексуално активне особе. Фактори ризика укључују већи број сексуалних партнера, као и незаштићене сексуалне односе. Циљне ћелије гениталних сојева C. trachomatis (серотипови D-K) су цилиндричне епителне ћелије ендоцервикса код жена и уретре код мушкараца. У доњем гениталном тракту жена инфекција је најчешће асимптоматска (70% - 90%) и последично недијагностикована и нелечена. Код великог броја инфицираних жена инфекција се завршава спонтаном резолуцијом, док се код 20 - 40% случајева инфекција шири у горњем гениталном тракту доводећи до оштећења и компликација везаних за репродуктивно здравље жена. Код мушкараца хламидијална инфекција је главни узрок уретритис, а код млађих мушкараца уретритис може бити компликован појавом акутног епидидимитис. Асимптоматска природа инфекције као и специфичан развојни циклус хламидија представљају важан изазов за постављање дијагнозе хламидијне инфекције. У последњих тридесет година остварен је значајан напредак на пољу дијагностиковања хламидијалне инфекције. Вишеструке опције лабораторијског тестирања могу бити коришћене у детекцији C. trachomatis, мада неке не могу бити препоручене за рутинску употребу. Према препорукама америчког и европског центра за контролу болести, тестови амплификације нуклеинских киселина су примарне дијагностичке методе хламидијалне инфекције.

1.1. Основне карактеристике C. trachomatis

1.1.1. Морфологија C. trachomatis

C. Trachomatis је мала (0,25µm- 0,8µm у пречнику) облигатна интрацелуларна Грам негативна бактерија која не може да се гаји на вештачкој подлози, већ искључиво у еукаронтским ћелијама (1). Паразитира на епителним ћелијама и користи хранљиве материје домаћа. Ове бактерије су ауксотрофичне и не могу да синтетишу неколико аминокиселина, због чега користе ATP (аденозин три фосфат) домаћина па се називају и
„енергетским паразитима“. Процесом гликолизе хламидије произведе ограчичену количину АТР, али њихов геном садржи два одвојене локуса за производњу АТР/АДР која су транслоцирани тако да преузимају АТР од домаћина како би обезбедиле довољну количину енергије за своје синтетске и метаболичке потребе (2).

C. Trachomatis поседује спољашњу мембрану која садржи липополисахарид, као и цитоплазматску мембрану. Липополисахарид је сличан липополисахариду других Грам негативних бактерија и специфичан је за род. Иако присуство пептидогликана (муреина) није потврђено, ушивање генома садржи два одвојена локуса за производњу АТР/АДР која су транслоциране тако да прихвате АТР од домаћина како би обезбедиле довољну количину енергије за своје синтетске и метаболичке потребе (3). Испод спољашње мембране локализован је слој чија је структура аналогна пептидогликану. У спољашњој мембране се налази главни протеин спољашње мембране (en. Major Outer Membrane Protein - MOMP), који чини 60% њене масе, површински је изложен и представља имунодоминантни антиген (4). MOMP садржи велике количине протеина које везују пеницилин (3). Испод спољашње мембране локализован је слој чија је структура аналогна пептидогликану. У спољашњој мембране се налази главни протеин спољашње мембране (en. Major Outer Membrane Protein - MOMP), који чини 60% њене масе, површински је изложен и представља имунодоминантни антиген (4). MOMP садржи важне неутралишуће детерминанте, укључујући цеолику (T ћелију) и игра важну улогу у увлачењу ЕТ (елементарну делу) за еукариотску ћелију (5). MOMP кодира omRA gen koji je pod pritiskom sелективног имунитета и антибиотика (6, 7). Обзиром да су две аминокиселине промене довољне за имунску специфичност, долази до omRA разноврсности што може довести до мало другачијих протеина који меняју интеракцију ових антитела са предходно синтетисаним антителима и дозвољавају мутираном спољашњој мембранозна избегавање имунског одговора (8) због чега се ова бактерија често назива и „притајени патоген“ због изузетне способности избегавања имунског одговора домаћина. Полиморфни мембрански протеини (en. Polymorphic Membrane Proteins - Pmp) карактеристични су само за хламидије, налазе се у спољашњој мембрани и имају важну улогу у патогенези болести (9). Геном C. Trachomatis садржи девет pmp (pmpA - pmpI) гена који кодирају ове протеине, ови гени чине 14% кодирајућег капацитета C. Trachomatis (10). Током перзистенције долази до промене експресије протеина па је тако експресија MOMP–а смањена док је експресија хламидијалног стрес протеина 60-kDa (en. 60-kDa chlamyidial heat shock protein - cHSP60) који има значајну улогу у дијагностици перзистентне хламидијалне инфекције повећана. Антитела на cHSP60 доказана су код жена са пелвичном инфламаторном болешћу (11, 12) и код жена са тубалним фактором инфертититета (13). Хламидије поседују и секрециони систем типа III (en. Type III

Раст хламидија у циљним епителним ћелијама се одликује јединственим двофазним развојним циклусом. Јавља се у два морфолошки различита облика који представљају вид адаптације на различите услове живота, елементарно тело (og enil. Elementary Body - ET) и ретикуларно тело (og enil. Reticulate Body - RT).

ET је инфективна екстрацелуларна форма одговорна за везивање хламидије за ћелију домаћина и успостављање инфекције. Инфекција се покреће адхезијом ET за апикалну површину епителних ћелија урогениталног система, а затим следи њихов улазак у ћелију који може бити посредован рецепторима. Метаболички је инактивно. Ћелијски зид ET је масиван и ригидан. Између протеина спољашње мембране образују се дисулфидни мостићи који ET обезбеђују ригидност, али и осмотску стабилност а самим тим и отпорност на екстрацелуларне услове живота. ET има једнаке количине DNK и RNK.

RT је метаболички активна неинфективна форма бактерије. Осмотски је осетљиво и не може опстати ван инкулизије нити се може везати за епителне ћелије. Прилагођено је интраћелијском преживљавању и умножавању бактерије. Овалног је облика танког ћелијског зида који нема чврстину, али има добру пермеабилност. Има три пута више молекула RNK у поређењу са DNK молекулом (19, 20).
1.1.2. Класификација *C. Trachomatis* на биотипове и серотипове

1.1.3. Развојни циклус *C. Trachomatis*

Chlamydia trachomatis инфицира ћелије домаћина како би се реплицирали. Циљне ћелије гениталних серотипова *C. Trachomatis* су епителне ћелије урогениталног тракта, цилиндричне епитетеле ћелије као и ћелије прелазног епитела ендоцервикса. Рецептори на ћелијама домаћина су: естрогенски рецептори, хепарин сулфатни рецептори рецептори за манозу и рецептори за манозу-6-фосфат (25). Карактеристичан развојни циклус почиње адхезијом ЕТ за апикалну површину епителних ћелија урогениталног тракта, након чега следи улазак у ћелију посредством ендофагоцитозе, пиноцитозе или ендоцитозе посредоване рецепторима. Велики број хламидијалних молекула има улогу адхезина као што је МОМР (26), глукозаминогликан (ог енгл. Glicosaminoglycan – GAG) (27), полиморфни мембрани протеин Д (ог енгл. polymorphicmembrane protein D – PmpD) (28) и други. Након везивања адхезина за рецептор на ћелији ЕТ преко секреционог система тип III у ћелијску мембрану епителне ћелије излучује транслоцирајући актин регрутујући
фосфопротеин који има важну улогу у актинском ремоделирању и цитоскелетном преуређивању које олакшава инвазију ћелија (29).

Новонастале везикуле која садрже ЕТ избегавају фузију са лизозомима (30), стварају повољно интрацелуларно окружење за репликацију и развиће. Везикуле се транспортују до перинуклеарног региона у близини Голџијевог апарата (31). Како би се обезбедили потребни есенцијални фактори за даљи развој инклюзија се спаја са везикулама које садрже сфинголипиде, холестерол, и глицеролфосфолипиде (32, 33, 34). У ЕТ се дешавају промене, долази до редукције дисулфидних веза, ЕТ губи ригидност, долази до декондезације хромозома и до транскрипциона активности генома (35, 36). ЕТ почиње да секретује гликоген и трансформише се у метаболички активну и неинфекцијну форму, ретикуларно тело. RT се дели бинарном деобом на свака 2-3h, при чему долази до експанзије инклюзија које могу садржати и до 1000 RT (37). RT су осмотски осетљива, не могу да преживе изван инклюзија нити се могу везати за епителне ћелије, тако да би се

овај инфективни процес окончао неопходна је конверзија RT у инфективна ЕТ. Када се развојни циклус заврши, зрела ЕТ се ослобађају преко два различита механизма. Први механизам обухвата ћелије које су лизирани у тих протеазама које разарају ћелије и читав садржај инклузије бива ослобођен. У другом случају, ЕТ се ослобађају процесом егзоцитозе уз нетакнути инклузију и без ћелијске смрти. (Слика 1.)

Након ослобађања садржаја инклузије, може доћи до некрозе или апоптозе. Разлика је веома важна, зато што некроза изазива нежељени инфламаторни одговор који може да доведе до фиброзе и болести, док код апоптозе, остаци ћелијског садржаја остају у апоптотском телу, које се ослобађа и бива фагоцитирано од стране других ћелија.

У неком тренутку током развића, репликација хламидија може бити заустављена преласком RT у абрантне форме које се налазе у стационарној фази. Аберантно, нерепликативно RT је морфолошки изменено, увећано, транскрипционо активно, али показује мањи степен метаболичке активности. Присуство ових абрантних, нерепликативних, али вијабилних перзистентних форми условљава низак степен хроничне инфламације што за последицу може имати дуготрајне секvelle.

1.1.4. Перзистентна хламидијална инфекција

Акутне инфекције доњег гениталног тракта изазване C. trachomatis су углавном асимптоматске, те стога инфекције најчешће пролазе недијагностиковане и последично нелечене. Сходно томе у неких 40% случајева инфекција се узлазно шири на горњи генитални тракт уз развој перзистенције, доводећи до хроничне инфламације и компликација (38). Перзистентна хламидијална инфекција код жена може довести до озбиљних репродуктивних компликација као што су: пелвична инфламаторна болест, тубарни фактор инфертилитета и ектопична трудноћа (39). In vitro студије показале су да Hella229 ћелије инфициране C. trachomatis развијају морфолошки абрантне инклузије као одговор на INF-γ, излагање пеницилину или недостатак есенцијалних амино киселина (40). Инхибиција интрацелуларног раста путем INF-γ, излагање пеницилину или недостатак есенцијалних амино киселина (40). Инхибиција интрацелуларног раста путем INF-γ постиже се искоранувањем триптофана, које настаје индукцијом триптофан-деградирајућег ензима, индол амино диоксиненазе. Услед недостатка триптофана долази или до смрти хламидија или развоја перзистентног интрацелуларног облика који остаје вијабилан (41). Услед инхибиције
репликације имунски и инфламаторни одговори се гасе уз значајан пад концентрације INF-γ. Као последица смањене продукције INF-γ перзистентни облик поново прелази у репликативни облик ретикуларног тела уз следствени настанак елементарних тела што је и окидач за поновну активацију инфламације и имунског одговора (42). Управо ови наизменични циклуси доводе до настанка хроничне инфламације и последичних компликација.

Постојање перзистенције in vivo може бити широко распрострањено, код жена код којих је култура негативна уз изостанак клиничких манифестација. У тим случајевима многи узорци који су били негативни на култури су били позитивни на тесту амплификације нуклеинских киселина дуго након што је резидуална DNK требала да буде отклањена лечењем, што индиректно указује на присуство перзистентне хламидијалне инфекције. Током перзистенције, смањена је експресија липополисахрида и МОМР-а, али је повећана експресија хламидијалног стрес протеина. cHSP60 може индуцирати антиген специфични имунски одговор по типу реакције касне преосетљивости. Серумска и мукозна антитела на cHSP60 доказана су код жена са пелвичном инфламаторном болешћу (43, 44) и тубарним фактором инфертилитета (45).

1.2. Патогенеза хламидијалне инфекције

Као што смо рекли, већина гениталних хламидијалних инфекција код жена је асимптоматске природе, што намеће потребу спровођења скрининга код млађих сексуално активних жена и њихових партнера. Рана дијагноза хламидијалне инфекције као и терапија, пре него што инфекција напредује до клинички значајног запаљења или оштећења јајовода, је од великог значаја и представља секундарну превенцију (47). Секундарна превенција се већ спроводи у многим земљама и очекује се смањење броја компликација и последица хламидијалне инфекције (46). Од овог програма се такође очекује смањење преношења и ширења инфекције у популацији а самим тим и смањење инциденце као и пратећих секвел (примарна превенција). Штетне последице хламидијалне инфекције се могу смањити кроз примарну и секундарну превенцију, али у великој мери зависе и од природног тока инфекције. Да ли ће доћи до спонтане резолуције инфекције или ће се развити хронична инфламација, делом зависи од патогена, а делом од самог домаћина. Када говоримо о факторима патогена који утичу на исход инфекције, пре
свега мислимо на врсту и карактеристике антигена хламидија на које имунски систем одговара и о механизимима помоћу којих хламидије успевају да избегну имунски одговор. Када је реч о домаћину мислимо на тип имунског одговора који ће се развити у току гениталне хламидијалне инфекције и одредити исход инфекције. Целуларни и имунобиолошки модели покушавају да објасне имуно-патогенетске механизме ове инфекције.

1.2.1. Целуларни модел патогенезе

У целуларном (ћелијском) моделу, у основи патогенезе су примарно инфламаторни процеси иницирани епителним ћелијама домаћина које су примарна мета хламидијалне инфекције.

Инфициране епителне ћелије луче хемокине и цитокине, који покрећу и појачавају целуларни инфламаторни одговор. Инфламаторни медијатори настали и од ћелија домаћина и од имунских ћелија на месту запаљења изазивају директно оштећење ткива. Континуирано ослобађање медијатора запаљења током перзистентне инфекције или реинфекције могу да доведу до ћелијске пролиферације, ремоделовања ткива као и до стварања ожињног ткива (48). (Слика 2.)
1.2.2. Имунолошки модели патогенезе

Патолошко оштећење репродуктивног тракта зависи од успона хламидије из цервикса у јајоводе и од типа специфичног имунског одговора који се развија у контакту са антигеном. Снажан протективни имунски одговор може да доведе до брзе резулуције инфекције на нивоу цервикса, док код перзистентних и поно вљених инфекција исти тај имунски одговор може имати карактер имунопатолошког одговора на нивоу туба и одговоран је за настанак компликација. Централну улогу у отклањању хламидијалне инфекције има Th1 имунски одговор уз активацију CD4+ limfoцита који продукују INF-γ (49). Насупрот томе, код перзистентних и поно вљених инфекција дуготрајни Th1 имунски одговор је одговоран за настанак оштећења ткива, по принципу реакције касне преосетљивости за коју је одговоран хламидијални HSP60 (50, 51). (Слика 3.)

У другом случају у раној фази инфекције може доћи до инхибиције протективног имунског одговора активацијом T регулаторних ћелија које продукују IL-10. Овај тип имунског одговора не успева да елиминише хламидијалну инфекцију што узрокује развој перзистентне хламидијалне инфекције и хроничног инфламаторног оштећења ткива. (Слика 4.)
Трећа могућност је да CD4+ лимфоцити диференцишу у правцу Th17 имунског одговора који карактерише продукција проинфламаторних цитокина и активација неутофила, без продукције INF-γ који је одговоран за активацију макрофага и протективног имунског одговора (52) који је заслужан за елиминацију интрацелуларних хламидија што води настанку имуно-патолошке инфламације уз оштећење ткива (53). (Слика 5.)

На крају, један од веома битних фактора у настанку последица на репродуктивном тракту жена је и реинфекција. Реинфекција се углавном јавља као последица сероваријабилности патогена, кратког протективног имунитета и антибиотске терапије. Наиме, претпоставља се да се Th1 имунски одговор појачава са сваком наредном
поновљеном инфекцијом или у случају перзистенције услед чега долazi до имунопатолошког оштећења ткива.

1.3. Епидемиолошки трендови хламидијалне инфекције

Инфекција C. trachomatis је најчешћа сексуално преносива бактеријска инфекција у свету (54). Од 1994. године хламидијална инфекција подлеже обавезном пријављивању, а од 2000. године је пријављена од већине држава (55). Инфекција погађа младе сексуално активне особе, тако да су и највише стопе случајева забележене код младих жена од 16 до 24 година. Стопа пријављених случајева код мушкараца је знатно нижа. Ниска стопа забележена код мушкараца је вероватно последица ниже стопе тестирања и откривања хламидијалне инфекције у тој поулацији, када се упореди са широким скринингом код жена (56). Даље, расна неједнакост у пријављеној стопи хламидијалне инфекције, вероватно је у вези са социјалним детерминантама здравља, као што су приступ здравственој заштити сиромашних који живе у заједницима са високом преваленцом полно преносивих болести. Фактори ризика укључују већи број сексуалних партнера, као и незаштићене сексуалне односе. Већина особа са хламидијалном инфекцијом немају симптоме који би их навели да потраже лекарску помоћ (57). Уколико остане нелечена, инфекција C. trachomatis код жена може да доведе до озбиљних последица на репродуктивном тракту укључујући пелвичну инфламаторну болест (Pl. Pelvic Inflammatory Desease - PID), неплодност са узроком у јајоводима као и ектопичну трудноћу (58, 59). Инфекција C. trachomatis током трудноће може да доведе до коњуктивитиса и пнеумоније новорођенчата, као и до постпарталног ендометритиса мајке (60). Код мушкараца хламидијална инфекција је главни узрок уретритиса, а код млађих мушкараца уретритис може бити компликован појавом акутног епидидимитиса (61). Програми превенције и контроле ослањају се на откривање и лечење инфекције, спречавање компликација и континуираног преноса, а заснованим пре свега на прероруци годишњих скрининга код младих сексуално активних жена и лечења њихових сексуалних партнера. Учесталост јављања инфекције без симптома и могућност неповољног исхода подстакла је развој и препоруку скрининга за жене. Због високе преваленце и тешких компликација, CDC (Og enî. Centre for Disease Prevention and Control) препоручује годишњи скрининг тест на хламидију за све сексуално активне адолесценте и младе жене до 25 година.
старости, за све жене које су у повећаном ризику за инфекцију због ризичног сексуалног понашања. CDC такође препоручује да се све предходно инфициране жене подвргну рескринингу три месеца након што су третиране због хламидијалне инфекције (62). Генерално, у Сједињеним Америчким Државама у периоду од 2015. до 2016. године забележен је пораст хламидијалне инфекције (63), док је у Европи глобална стопа пријављених хламидијалних инфекција велика, али показује стабилност (64).

1.3.1. Епидемиологија хламидијалне инфекције у Сједињеним Америчким Државама

Најчешће пријављена полно преносива болест у Сједињеним Државама је инфекција изазвана C. trachomatis. Из године у годину, укупна стопа хламидијалних инфекција у САД-у је у сталном порасту. На ове епидемиолошке трендове поред повећане инциденције инфекције, значајно утичу примене нових дијагностичких процедура као и потпуније извештавање од стране институција. Од 2000./2001. године проширина је употреба осетљивих дијагностичких тестова као што су тестови амплификације нуклеинских киселина (NAAT-s), што је вероватно довело до повећања броја идентификованих и пријављених инфекција. Повећана употреба електронског лабораторијског извештавања у последњих десет година повећала је и број пријављених случајева. Сходно томе, на повећање броја пријављених случајева хламидијалне инфекције може утицати повећање инциденце, потреба осетљивих дијагностичких тестова, скрининг прегледи као и потпуније извештавање. Исто тако, на смањење броја пријављених случајева хламидијалне инфекције може утицати смањење инциденце или броја скрининг прегледа. У 2016. години центру за контролу болести укупно је пријављено 1 598 354 случајева, што значи да је стопа инфекције била 497,3 случајева на 100 000 становника. У односу на 2015 годину, ова стопа је показала повећање за 4,7%. Повећање је забележено у свим деловима Сједињених држава у периоду од 2015.-2016. године, с тим што је Североисточна регија пријавила највећу стопу од 7% (55).
1.3.2. Епидемиологија хламидијалне инфекције у Европи

Глобална стопа пријављених хламидијских инфекција у Европи је велика, али показује стабилност. У периоду од 2010. до 2014. године број случајева из 26 земаља које су пријављене Европском центру за превенцију и контролу болести је порастао са 358 489 на 396 128, што би чинило 187 случајева на 100 000 становника, међутим постоје велике варијације између земаља и њихових пријављених стопа. Земље које пријављују преко 200 случајева на 100 000 (549 - Исланд, 529 - Норвешка - 486, Шведска - 375, Велика Британија - 368), су добро спровеле програме превенције и контроле болести, засноване пре свега на препоруци годишњих скрининга, код младих и сексуално активних жена и лечења њихових сексуалних партнера. Стопа пријављивања је највећа код младих сексуално активних жена (240/100 000) и хетеросексуала. Код мушких стопа пријављених случајева је знатно мања (156/100 000). Постоје велике варијације међу земљама Европе у пријављеним стопама хламидијалне инфекције. Веома ниска стопа инфекције у неким земљама централне и источне Европе може бити последица промена здравствених система и чешћег посећивања приватних пракса које не подносе извештаје тестирања на хламидијалну инфекцију (65). Даље, у неким земљама NAAT технологија још увер није доступна, што свакако отежава надзор над хламидијалном инфекцијом.

1.3.3. Епидемиологија хламидијалне инфекције у Србији

Инциденца хламидијалне инфекције у републици Србији је ниска. На овај епидемиолошки тренд поред ниске стопе пријављених случајева, значајно утичу и дијагностичке процедуре које се користе за дијагнозу хламидијалне инфекције као и извештавање од стране институција. Даље, посећивање приватних пракса, које не извештавају о резултатима тестирања на хламидијалну инфекцију такође има удела на ова кретања. У периоду од 2014. до 2016. године нема значајних варијација у инциденци хламидијалне инфекције. 2014. године пријављено је 954 случаја што даје инциденцу од 13,32%, 2015. године бележи се благи пад и пријављено је 941 случај и инциденца од 13,19%, док је 2016. године инциденца нешто нижа од предходне године и износи 12,65%, односно 893 пријављена случаја на укупан број становника.
1.4. Клиничке манифестације и компликације хламидијалне инфекције

Преношење *C. trachomatis* се обично дешава директним контактом преко слузокоже између две особе током сексуалног односа (вагинални, анални или орални секс) или у току порођаја, проласком плода кроз инфицирани цервикални канал (66). Фактори ризика за инфекцију *C. trachomatis* су незаштићени сексуални односи као и већи број сексуалних партнера, што је и индикација за лабораторијско тестирање на ову бактерију. Инфекција најчешће протиче асимптоматски, у 70-90% случајева и сходно томе остаје недијагностикована и нелечена. Уколико остане нелечена инфекција *C. trachomatis* код жена може да доведе до озбиљних последица на репродуктивном тракту, док су код мушкараца компликације су мање изражене и ретко доводе до последица по репродуктивно здравље (67). Инфекције хламидијом су повезане и са повећаним стопама преношења HIV-a (68).

1.4.1. Инфекција код жена

Већина инфекција *C. trachomatis* код жена је без или са благим симптомима, мада се код једне трећине жена јављају знаци инфекције. У том случају већина жена се угледном жали на појаву мукопурулентног вагиналног секрета или посткоиталног крварења. На прегледу се често примећује едем, конгестија и крварење цервика (69). Клиничке манифестације гениталне хламидијане инфекције код жена, пре свега обухватају инфекције доњег гениталног тракта, појавом цервицитиса који може бити повезан са уретралном инфекцијом која је праћена дизуријом. Уколико остане нелечена инфекција се асцендентно шири на горњи генитални тракт доводећи до ендометритиса, салпингитиса, аднекситиса и пелвичне инфламторне болести. Ендометритис може да доведе до појаве ирегулярног крварења из материце. Салпингитис често доводи до појаве молимења на улуковима и до појаве обилних репродуктивних компликација. Две трећине свих случајева неплодности са узроком у јајоводима и трећина случајева ектоличних трудноћа могу бити последица хламидијалне инфекције (70, 71). У ранијим студијама о преношењу и лечењу хламидијалне инфекције, је утврђено да 30% жена са нелеченим урогениталним хламидијалним инфекцијама развја PID (72, 73). Симптоми и знаци који наговештавају PID су болна осетљивост и бол у доњем стомаку, обично билатерално, осетљивост цервика на покрет при мануелном вагиналном прегледу, диспареунија,
ирегуларно крварење, повећан вагинални или цервикални секрет као и повећана телесна температура (74, 75, 76). Без обзира на интензитет симптома, последице PID-a су тешке. Двадесет посто жена са симптоматским PID-ом су касније стерилне, 18-42% ће имати хронични бол у малој карлици и 1-9% ће имати ектопичну трудноћу (77, 78, 79, 80, 81).

1.4.2. Инфекција код жена за време трудноће

Хламидијална инфекција у трудноћи, може довести до оштећења ендометријума и губитка плода. У другом и трећем триместру може доћи до превремене руптуре пловових овојница и превременог порођаја, мале телесне масе и неонаталне смрти (82, 83). Постпартални ендометритис се јавља код 30% жена које су имале пренаталну хламидијалну инфекцију (83, 66).

1.4.3. Постпарталне и неонаталне инфекције

Постпартални ендометритис се јавља код 30% жена које су имале пренаталну хламидијалну инфекцију (83, 66). Хламидијална инфекција се у току вагиналног порођаја може пренети на новорођенчади. Хламидијална инфекција се у току вагиналног порођаја може пренети на новорођенчади проласком кроз инфицирани порођајни канал. Трансмисија инфекције преко инфицираног вагиналног секрета јавља се код 50-70% жена (84). Око 50% новорођенчади инфицираних мајки ће развити коњуктивитис 5-10 дана након рођења (85). Углавном уз коњуктивитис 50% новорођенчади ће имати и назофарингеалну инфекцију (86). Хламидијална пнеумонија се развија код 30% ових случајева, две до три недеље након рођења колико је и време инкубације. Хламидијална инфекција се на новорођенчади најчешће преноси приликом порођаја, мада су забележене и интраутерине инфекције (87). Код превремено рођене деце, често је забележен хориоамнионитис и респираторна инсуфицијенција који могу бити последица интраутерине хламидијалне инфекције (88).

1.4.4. Инфекције код мушкараца

Хламидијална инфекција је главни узрок негонококног и постгонококног уретритиса. Компликације као што су епидидимитис и епидидимо-орхитис погађају мањи број инфицираних мушкараца и ретко доводе до репродуктивних секвел (67). Не постоје докази о улози хламидијалне инфекције у појави упале простате (89), као ни у улози
настанска мушке неплодности (90). Међутим, хламидијална инфекција је индиректно повезана са мушким субфертилитетом или стерилитетом као резултат директног утицаја на продукцију сперме, сазревање, покретљивост и вијабилност сперматозоида (91, 92, 93). Рајтеров синдром или реактивни артритис је такође повезан са гениталном хламидијалном инфекцијом код мушкараца и жена (89).

1.5. Тестови за дијагнозу хламидијалне инфекције

Недијагностикована и нелечена инфекција C. trachomatis може да доведе до озбиљних компликација и последица на репродуктивном тракту (94, 95). Рана дијагностика акутне хламидијалне инфекције је изузетно важна, али и врло изазовна због асимптоматске природе и карактеристичног развојног циклуса C. trachomatis. Главни циљ лечења ове инфекције је да се спрече компликације на репродуктивном тракту.

Лабораторијском дијагностиковању хламидијалне инфекције треба да се подвргну сви мушкарци са негонококним уретритисом, постгонококним уретритисом, епидидимитисом или Рајтеровим синдромом, као и жене са мукопурулентним цервицитисом, ектопичном трудноћом, тубалним фактором инфертитилитета, болом у карлици, сви пацијенти са понорејом, труднице, асимптоматски сексуално активни пацијенти, са циљем благовременог дијагностиковања инфекције доњег гениталног тракта и превенције преношења и настанка секвела на горњем репродуктивном тракту (95, 96). Врста узорка за анализу зависи од клиничке слике као и лабораторијских техника које се користе у детекцији инфекције. Услови транспорта и чувања узорака се прилагођавају одређеној техници. Са узорцима који треба да се тестирају комерцијалним EIA, DIF, NAH или NAA тестовима треба руковати као што је наведено у упутству теста. Инвазивни узорци укључују брисеве уретре код мушкараца, ендцервикалне или уретралне брисеве код жена како и узорке добијене из горњег гениталног тракта жена (течност добијена из Дугласовог шпага, узорци ендометријума или из јајовода). Неинвазивни узорци укључују узимање првог млаза урина, вулвовагиналне брисеве, аналне и брисеве пениса. Мноштво доказа говори у прилог да је узорак првог млаза урина код мушкараца једнак или чак бољи у односу на уретралне брисеве (97, 98). Коришћење урина могло би да повећа број рутинских скрининга код мушкараца. Узорци вагиналних брисева су сензитивни колико и узорци цервикалних брисева, уз исту специфичност (99, 100, 101, 102, 103, 104). Неке
раније студије указују да први млаз урина, код жена, може да открије до 10% мање инфекција у поређењу са узорцима вагиналних и ендоцервикалних брисева (99, 104, 105). Ови неинвазивни узорци захтевају високо сензитивну дијагностичку методу као што је амплификација нуклеинских киселина (NAAT). Дијагностичке процедуре за откривање хламидијалне инфекције укључују директне и индиректне методе. У директне дијагностичке методе убрајају се култура, тестови за детекцију антигена као што су тест директне имунофлуоресценције (DIF) и имунохроматографски (брзи тест), хибридизација нуклеинских киселина и амплификациони тестови. Индиректне методе зависе од детекције антитела против *C. trachomatis* и ови тестови могу бити од користи у дијагнози пелвичне инфламаторне болести, тубалног фактора инфертилитета и пост-инфекцијних компликација, као што је сексуални стечени реактивни артритис. У овим условима, патогени су прешли епител и више се не могу детектовати у брисевима. Лабораторијске услуге за дијагнозу *C. trachomatis* су постала доступне почетком осамдесетих година, када су развијени системи ћелијских култура за инокулацију клиничких узорака. Ови системи су употпунили цитолошке методе и свакако унапредиле поље дијагностике. Током осамдесетих и деведесетих година комерцијалне компаније уз велике напоре развијају опрему за детекцију антигена и нуклеинских киселина, што је омогућило дијагностичко тестирање асимптоматских и симптоматских инфекција из неинвазивних узорака (106, 107). Данас је доступан велики број комерцијалних тестова са различитим перформансама. Велики број тестова има задовољавајућу специфичност, док се сензитивност креће од веома ниских вредности (30%) па до преко 95% какву имају NAAT тестови. Препоруке америчког и европског центра за контролу болести су јасне, тестови амплификације нуклеинских киселина се због високе сензитивности, специфичности и брзине препоручују за детекцију инфекција гениталног тракта изазваних *C. trachomatis* и код мушкараца и код жена, са или без симптома (108, 109). Друге методе за дијагнозу акутне гениталне хламидијалне инфекције могу се користити само у случајевима када су технике амплификације нуклеинских киселина недоступне из било ког разлога.
1.5.1. Култура ћелија као референтни метод

Како је *C. trachomatis* облигатна интрацелуларна бактерија, изолација хламидија у култури ћелија и даље представља референтни метод за дијагнозу, јер је то једини тест којим се може доказати присуство вијабилних хламидија у болесничком узорку (110). Узимање узорака за култивисање *C. trachomatis* је инвазивно и захтева инсерцију брис штапића 2-3 см у мушку уретру и 1-2 см у ендоцервикални канал, уз ротацију у циљу узимања довољно цилиндричних или кубоидалних епителних ћелија. Након узимања, узорци за културу би тербало бити складиштени у одговарајућем транспортном медијуму и транспортовани на температури <4ºC у лабораторију 24h након узорковања, како би се добило што већи број вијабилних организама. Уколико је транспорт одложен дуже од 24h од узимања, транспортни медијум у коме се чува узорак треба да буде ускладиштен на -70ºC. Све ово нам говори о комплексности ове дијагностичке методе, што је уједно и њен недостатак. Ћелијске линије које подржавају раст *C. trachomatis* укључују McCoy, Hella 229, HEP-2 ћелије као и Buffalo green ћелије бубрега мајмуна. Клинички узорци се инокулишу на циклохексамид третиране монослојеве културе McCoy ћелија или других одговарајућих ћелија. Инокулација укључује центрифугирање узорака на ћелијски монослој праћено инкубацијом 48-72h. Након 48-72h раста, инфицирани ћелије развивају карактеристичне интрацитоплазматске инклузије које садрже значајан број елементарних ретикуларних телацара *C. trachomatis*. Монослој ћелија се излаже генус или врсно специфичним флуоресценцијом обележеним моноклонским антителима да би се добила специфична визуализација хламидијалних инклузија флуоресцентним микроскопом. Детекција *C. trachomatis* путем ћелијског култивисање високо специфична уколико је коришћено биојење специфично за главни протеин спољашње мембране МOMP (111). Комерцијално биојење коришћених монофеном антитела против липополисахарида која су генус специфична, коштају мање, али показују мању специфичност и могу бити погодна за рутинску употребу. Мање специфичне методе детекције инклузија где се користи биојење јодом или Гимза бојење се не препоручују (112, 113). Генерално, ова дијагностичка метода има високу специфичност, али са друге стране покажује ниску сензитивност. У одређеним лабораторијама, већа сензитивност се постиже извођењем „слепог прелаза“ када се инокулисани монослој ћелија инкубира 48-72h, након чега се монослој растура и користи за инокулацију у циљу добијања новог циклуса раста (114).
Даље, „Shell vial“ метод култивисања користи већи инокулум са смањеним ризиком за укрштену контаминацију и тиме обезбеђује већу тачност од методе са микротитар плочом са 96 бунарчића (115, 116). Како успешност култивисања зависи од виталних организама, стопа детекције је у најбољем случају 60%-80%, чак и када тест изводе искусни техничари (117). Осетљивост културе може бити смањена неадекватним сакупљањем, складиштењем и транспортом узорака, коменсалним микробима као и неким токсичним материјама које могу бити присутне у узорку. Додатни недостаци су дуго време раста, интензитет рада и тешкоће у стандардизацији. Према томе, ћелијска култура данас се ретко користи у дијагностици хламидијалне инфекције, али је још увек потребна дијагностичка метода, бар у неким лабораторијама ради праћења дејства антибиотика, промене вируленције, као и у ситуацијама када је потребан тест на највећом специфичношћу као у случају сумње на сексуални напад (62). Закључно, упркос техничким тешкоћама, ћелијска култура, када је изводи искусан техничар, је била најсензитивнија и најспецифичнија метода, и као таква важила је за референтни метод до појаве NAAT тестова (118, 119).

1.5.2. Детекција антигена

Дана с је доступан велики број комерцијалних тестова за детекцију хламидијалних антигена (96). У тестовима за детекцију хламидијалних антигена, користе се или поликлонска антитела за детекцију хламидијалног липополисахарид (LPS) или моноклонска антитела за детекцију главних протеина спољашње мембране (MOMP). Уколико се користе поликлонска антитела за детекцију хламидијалног липополисахарида постоји могућност јављања лажно позитивних резултата због укрштене реакције са липополисахаридом других микроорганизама (120, 121). Произвођачи су развили блокирајуће тестове који верификују позитивне резултате EIA тестова да би повећали специфичност (122). Узорци могу бити складиштени и транспортовани без чувања на ниским температурама и треба да буду одрађени у оквиру временског рока који је дат у упутству произвођача. Тестови за детекцију антигена се брзо изводе и обезбеђују резултате за кратак временски период, што је од велике важности ради благовременог укључивања терапије. Дијагностика заснована на другим тестовима захтева другу посету пацијенту, што потенцијално доводи до одложеног лечења или изостанка лечења, уколико се пацијенти не појаве, што може да доведе до пораста инциденце инфекције. Поред
кратког времена извођења теста и високе специфичности, али уз ниску сензитивност ови тестови нису препоручени за дијагнозу акутне хламидијалне инфекцији од стране европског и америчког CDC-a.

1.5.2.1. Тест директне имунофлуоресценције (DIF)

Неколико тестова директне имунофлуоресценције (DIF) су комерцијално доступни и користе моноклонска антитела за детекцију главног протеина спољашње мембране (MOMP) који је специфичан за врсту (Syva Microtrak, USA; Trinity Biotech, Irska; Cellabs Pty Lty, Brookvale, Australia). Употребом анти-MOMP моноклонских антитела у односу на полиоклонска антитела за детекцију хламидијалног липолисахарида, ова дијагностичка метода је значајно поравила вредности специфичности и квалитет флуюресценције, јер се MOMP подједнако распоређује по спољашњој мембрани C. trachomatis. Материјал за узорак се добија брисом или ендощервикалном четкицом, затим се наноси на предметно стакло, фиксира и може се чувати најдуже седам дана од дана узорковања (123). Бојење се састоји од покривања размаза флуюресценном обележеним моноклонским антителима која се везују за елементарна телацца C. trachomatis. Након тога се обојена елементарна телацца идентификују флуюресцентном микроскопијом (122). Код ове методе могуће је проценити квалитет ендощервикалних размаза, присуством и бројем цилиндричних епителних ћелија. Сензитивност комерцијално доступних тестова директне имунофлуоресценције се, уз високу специфичност (98%) креће у интервалу од 60%-75% у односу на тестове амплификације нуклеинских киселина (124). DIF метода је брза за извођење, високо специфична, али је и субјективна метода, која захтева компетентну и адекватно обучену особу у флуюресцентној микроскопији и идентификацији флуюресцентном обележеним елементарних телаца. Неки аутори препоручују ову дијагностичку методу у популацији са ниском преваленцом (125), док се други не слажу, и кажу да је треба примењивати само у лабораторијама које обрађују мали број узорака (126). Док европски CDC каже да се идентификација C. trachomatis помоћу директног флуюресцентног теста може користити у дијагностици акутне инфекције, само ако NAAT тестови нису доступни или се не могу приуштити (126). Према препорукама америчког CDC ови тестови не треба да буду коришћени за рутинско тестирање узорака гениталног тракта, између остalog и због своje ниске сензитивности (123).
1.5.2.2. Брзи имунохроматографски тестови (ВТ)

На тржишту постоји више брзих имунохроматографских тестова различитих производача за детекцију хламидијалне инфекције. Ови тестови су лакши и бржи за извођење у односу на DIF. Детектирају хламидијални липополисахарид и постоји могућност јављања ложно позитивних резултата због укрштене реакције са липополисахаридом других микроорганизлим (112,113). Материјал за узорак се узима стандардним брисом који не захтева посебан транспорт и складиштење. Предходно припремљени клинички узорак се наноси на одређени део тест плочице, који је премазан специфичним антителима. Уколико у узорку има хламидијалних антигена долази до реакције са антителом и јавља се карактеристично обојење у тест региону. Резултат се очитава за десят минута, квалитативно као позитиван или негативан тест. Брзи имунохроматографски тестови за детекцију C. trachomatis могу бити изведени за тридесет минута, не захтевају скупу и софицирању опрему, доступни су у паковањима као комплети. Ови тестови могу да имају предности у ординацијама лекара, малим клиникама и болницама или у неким околностима када су резултати потребни за кратко време. У поређењу са NAAT тестовима осетљивост тренутних имунохроматографских тестова је ниска (127, 128, 129, 130, 131). Европски CDC не препоручује употребу тренутно доступних имунохроматографских тестова у дијагностици хламидијалне инфекције, осим ако осетљивији тестови нису доступни, уз напомену, да резултате треба тумачити уз велики опрез (66). Ови тестови показују високу специфичност (97%-100%), брзо се изводе, јефтинију су, али имају ниску сензитивност (20%-60%) и као такви не могу се препоручити за дијагнозу акутне хламидијалне инфекције (132, 133, 134, 135, 136).

1.5.3. Детекција антитела

Детекција антитела спада у индиректне методе дијагностикаовања хламидијалне инфекције. Доступне серолошке методе су између осталих, фиксација комплемента, микроимунофлуоресценција и EIA. Класични тест фиксације комплемента се данас ретко користи. Микроимунофлуоресценција и EIA омогућавају разликовање IgA, IgG и IgM антитела. Метод микроимунофлуоресценције, који је врсно и серотип специфичан, сматра се референтном методом у својој оригиналној форми и од велике користи је у дијагностици хламидијалне инфекције код новорођенчади. Серологија је корисна само у
неким случајевима хламидијалне инфекције и у сериопидемиолошким студијама (137). У тестирању некомпликованих гениталних хламидијалних инфекција серологија готово да нема значаја (138, 139, 140). Ова метода се не препоручује ни код скрининг прегледа, обзиром да се IgG антитела настала током предходне инфекције дуго задржавају, тако да је тешко разликовати тренутну од предходне инфекције. Иако се ове методе не препоручују за дијагнозу акутних инфекција доњег гениталног тракта и скрининг асимптоматских пацијената, серологско тестирање може бити од користи при дијагностиковању LGV. Услед инвазије дренирајућих лимфа чворова долази до системског одговора антитела који може бити регистрован, и може помоћи при дијагнози ингвиналне болести (141). Одређивање укупног броја антитела методом фиксације комплемента или потпуне-инклузионе флуоресценције је било корисно при идентификацији пацијената са тубалним фактором инфертилитета (142, 143). Дијагностиковање перзистентне хламидијалне инфекције првобитно је засновано на налазима добијеним традиционалном, али специфичном хламидијалном серологијом.

1.5.3.1. Детекција серумско нивоа IgA и IgG антитела

Најбржи и најпоузданiji начин утврђивања специфичних антитела код хламидијалне инфекције, чак и при ниским титровима антитела је микроимунофлуоросценција као златни стандард, тест индиректне имунофлуоресценције и ELISA тест. Код микроимунофлуоресценције се користе пречишћена елементарна телашца C. trachomatis, липополисахарид антиген који је инактивиран, што минимализује укрштање реакције (144). ELISA тест користи MOMP као циљни антиген. Квалитет овог антигена осигурава високу специфичност теста, и не постоји позната укрштена реакцијност. Тест комплет садржи микротитар плоче, свака са осам одвојених реагенс бунарчића обележени хламидијалним антигенима. У првом кораку, разблажени узорци од пацијената се инкубирају у бунарчићима. У случају позитивних узорака специфична IgA или IgG антитела не мора да се везати за анигене. Друга инкубација се изводи употребом ензимом обележених анти хуманих IgA и IgG антитела (ензимски коњугат) чиме се катализује реакција променом боје, што омогућава детекцију везаних антитела. Код локализованих инфекција, са јасно израженим клиничким симптомима хламидијална антитела не морају увек да се стварају. Даље, повећање титра IgG антитела такође не мора...
увек да се нађе. Стога је у проблематичним случајевима потребно утврдити присуство хламдијалне инфекције у инфективним секретима путем директне имунофлуоресценције, или утврдити специфичне генске секвенце коришћењем PCR-а. Студије широм Европе су показале да на основу серумског нивоа IgA и IgG антитела могуће потврдити инфертититет код жена, настао као последица хламдијалне инфекције (145). Код жене које су имале превремени порођај или мртворођеност често је забележен повећан серумски ниво IgA и IgG антитела (146). Са друге стране, велики број студија указује да серолошки IgA и IgG тестови немају никаквог значаја у дијагностици акутне хламдијалне инфекције (108, 147). Ове тврдње подржава амерички и европски CDC, који због ниске сензитивности такође не препоручује серолошке тестове за скринг и дијагнозу акутне хламдијалне инфекције.

1.5.4. RT PCR

Технологска еволуција у клиничкој лабораторијској дијагностици је значајно напредовала развојем директне молекуларне детекције патогена у клиничком узорку. Изолација и идентификација C. trachomatis у ћелијској култури је дуго била референтни стандард са којим су упоређивани сви други дијагностички тестови. Обзиром на тешкоће у одржавању вијабилности организмама током транспорта и складиштења, стандардизацију, техничку комплекesenost, цену и ниску сензитивност неопходни су били тестови који се нису заснивају на култивисању. Први тест који се није заснивао на ћелијском култивисању је ензимски имуноесеј (EIA), који детектује хламдијалне антигене и тест директне имунофлуоресценције који користи флуоресценом обележена monoklonска антитела која се специфично везују за бактеријске антигене у брисевима. Након тестова детекције антигена, појавили су се тестови хибридизације нуклеинских киселина, који откривају специфичне секвенце DNK и RNK C. trachomatis. Са појавом ових тестова, од којих неки могу бити аутоматизовани, уведен је скринг програми за C. trachomatis. Примарни недостатак ових тестова је била ниска сензитивност (148). Овај проблем је превазиђен појавом NAAT тестова. NAAT тестови су дизајнирани да амплификкују и открију секвенце нуклеинских киселина које се специфичне за организам који се детектује, и не захтевају вијабилне организме. NAAT тестови су за око 30-35% сензитивнији од предходно споменутих тестова (149). Неколико NAAT метода су
тренутно лиценциране за детекцију C. trachomatis у клиничким узорцима: ланчана реакција полимеризације (od engl. polimerase chain reaction - PCR) (Amplicor, Roche Molecular Systems, USA), ланчана реакција лигазе (od engl. ligase chain reaction - LCR) (LCx test, Abbott Laboratories, USA), транскрипцијом посредована амплификација (od engl. transcription-mediated amplification - TMA) (AMP-CT i APTIMA Combo 2, Gen-Probe Inc, USA) и изотермална амплификација заменом ланаца (od engl. strand displacement amplification - SDA) (ProbeTec, BD Diagnostic Systems, USA). PCR, LCR i SDA тестови амплификају нуклеотидне секвенце криптичног плазмида, који је присутан у вишеструким копијама сваког ET C. trachomatis. TMA реакција региструје рибозомалну RNA која је такође присутна у вишеструким копијама. Откривање Chlamydia trachomatis путем ланчане реакције полимеразе (PCR), заснива се на истицању специфичног дела генома патогена коришћењем специфичних прајмера. За прајмере нуклеинских киселина који се користе у комерцијалним NAAT тестоваима за C. trachomatis није познато да дају укрштену реакцију са DNK других бактерија. У „Real time PCR“ методи истакнути продукт се детектује коришћењем фуоресцентних боја. Ланчана реакција полимеризације у реалном времену (od engl. Real Time Polimerase Chain Reaction - RT PCR) је квалитативни тест који садржи интерну kontrolу (IC), која мора бити употребљена у поступку екстракције, у циљу контроле процеса екстракције сваког засебног узорка, као и за идентификацију могуће инхибиције реакције. Комерцијални тестови се разликују у методама амплификације и циљним секвенцама нуклеинских киселина. Већина комерцијалних NAAT тестова су погодни за детекцију C. trachomatis у вагиналним и ендосервикалним брисевима код жена, уретралним брисевима код мушкараца, и узорцима првог млаза урина код жена и мушкараца. Висока сензитивност NAAT тестова се приписује њиховој теоретској способности да произведу позитиван сигнал из тако мало почетног материјала као што је једна једина копија циљне DNK или RNK. Обзиром на овако високу сензитивност, потребни су напори да се превенира контаминација узорака на клиници или ширење ампликона у лабораторији. Лабораторије би требало да поштују стандардне молекуларне технике, одржавају чистим радне просторе и опрему, спроводе негативне контроле при сваком извођењу. Закључно, NAAT тестови су далеко супериорнији у укупним перформансама у поређењу са другим тестовима са или без култивисања у откривању C. trachomatis. Ови тестови дају високу сензитивност детекције, преко 90%, уз одржавање високе специфичности од 99%, и детектују 20-50% више
хламидијалних инфекција од оних које детektују ранији тестови са или без култивисања (150). Са оваквим перформансама ови тестови су и једини који су препоручени од стране америчког и европског CDC за дијагнозу асимптоматских и симптоматских хламидијалних инфекција, са компромисом само у ситуацијама када су NAAT тестови недоступни из било ког разлога (151). Захваљујући високој специфичности проверених NAAT тестова, и малом ризику од губитка позитивних резултата није потребно потврдно тестирање позитивних налаза (152, 153). Студија спроведена 2002 године потврђује ову констатацију, резултати поновљеног тестирања су се слагали у више од 90% случајева са резултатима иницијалних тетсова за детекцију C. trachomatis (154, 155).

1.6. Препоруке CDC и ECDC за дијагнозу акутне хламидијалне инфекције

Према препорукама америчког и европског центра за контролу болести, тестови амплификације нуклеинских киселина се због супериорне сензитивности, специфичности и брзине препоручују за детекцију инфекција гениталног тракта изазваних C. trachomatis и код мушкараца и код жена, са или без симптома (108, 109). За ове тестове се показало да имају најбољи однос трошкова и учинка у превенцији секвел које могу настати као последица ове инфекције (106, 156, 157). Према истим изворима, изолација хламидија у култури ћелија и директна имунофлуоресценција се могу користити за дијагнозу акутне гениталне хламидијалне инфекције само у случајевима када су технике амплификације нуклеинских киселина недоступне из било ког разлога. За извођење свих NAAT тестова као и других дијагностичких метода, кључно је да се прецизно прате препоруке произвођача узимајући у обзир прикупљање, транспорт и складиштење узорка, као и извођење специфичног теста, укључујући интерне контроле (позитивне, негативне и ако се захтева контроле инхибиције) и учешће у одговарајућој националној или интернационалној екстерној процени квалитета. Пре одобрења дијагностичког теста одрађена је строга евалуација од стране америчке Food and Drug Administration, која такође препоручује NAAT тестове као примарне дијагностичке методе хламидијалне инфекције.
2. ЦИЉЕВИ И ХИПОТЕЗЕ СТУДИЈЕ

А. ЦИЉ:

А.1 ПРИМАРНИ ЦИЉ

1. Утврдити да ли постоји слагање резултата RT-PCR теста за детекцију C. trachomatis (златни стандард) са резултатима добијеним употребом директне имунофлуоресценције (DIF) и брзог имунохроматског теста (EIA) за квалитативно откривање хламидијалних антигена и имуноензимских тестова за детекцију серумског нивоа IgA и IgG антитела специфичних за хламидијални MOMP антиген (ELISA).

А.2 СЕКУНДАРНИ ЦИЉЕВИ

1. Утврдити да ли постоји слагање резултата RT-PCR теста за детекцију C. trachomatis (златни стандард) са резултатима добијеним комбиновањем два или више тестова.

2. У односу на златни стандард одредити сензитивност, специфичност, позитивну и негативну предиктивну вредност за сваки тест и комбинацију тестова.

3. Утврдити да ли употреба више тестова може побољшати детекцију гениталне хламидијалне инфекције.

4. Одредити медицинске трошкове анализа, кумулативно и појединачно.

5. Одредити директне и индиректне медицинске трошкове тестирања и лечења испитаника са стварно позитивним, лажно позитивним и лажно негативним резултатима, кумулативно и појединачно.

Б. ХИПОТЕЗЕ

Б.1 ПРИМАРНА ХИПОТЕЗА

1. Постоји слагање резултата RT-PCR теста за детекцију C. trachomatis (златни стандард) са резултатима добијеним употребом DIF, EIA и ELISA тестова, али је вредност статистичког теста слагања дијагностичких метода за капа статистику ниска.
Б.2 СЕКУНДАРНЕ ХИПОТЕЗЕ

1. Комбиновањем два или више тестова повећава се вредност статистичког теста слагања дијагностичких метода за капа статистику.

2. У односу на златни стандард испитивани тестови, као и комбинације тестова имају инфериорну сензитивност, специфичност, позитивну и негативну предиктивну вредност.

3. Употреба више тестова може побољшати детекцију гениталне хламидијалне инфекције.

4. Профил медицинских трошкова DIF, EIA и ELISA тестова је повољнији у односу на RT-PCR анализе али због недовољних дијагностичких перформанси и последичне потребе за њиховим комбиновањем постаје знатно неповољнији.

5. Профил директних и индиректних медицинских трошкова DIF, EIA и ELISA тестова је неповољнији у односу на RT-PCR анализе због додатних медицинских услуга условљених већом учесталошћу лажно позитивних и лажно негативних резултата.
3. МАТЕРИЈАЛ И МЕТОДЕ

3.1. Популација која се истражује

У истраживање је била укључена група од 224 испитаника старијих од 18 година, оба пола, који су се у периоду од јануара месеца 2015. до децембра месеца 2016. јављали на Институт за јавно здравље у Крагујевцу ради тестирања на хламидијалну инфекцију. Испитаници су били укључени у студију након процене подобности за укуљење и потписивања формулара Информисаног пристанка. За укуљење у студију пацијенти су требали да задовоље све укуљујуће и да немају ни један искућујући критеријум. У студију су били укључени испитаници оба пола, старији од 18 година, упућени у Институт за јавно здравље у Крагујевцу ради тестирања на хламидијалну инфекцију. Из студије су биле искуљушене све особе млађе од 18 година, ако постоји било какво обољење, стање или други фактор који би својим квалитетом и квантитетом могао у значајној мери да утиче на резултат испитивања (трудноћа, у току менструације, скорашња примена антибиотика или топикалних вагиналних препарата у току предходна 72 часа, коинфекција другим патогенима и друго), ако већ учествује у другом клиничком испитивању, ако одбија да учествује у студији и ако постоје било које друге околности које у значајној мери ономогућавају учешће у студији.

3.2. Узорковање

Укључивање пацијената у истраживање обављено је у Институту за јавно здравље у Крагујевцу. Свим особама који су били упућени у Институт за јавно здравље у Крагујевцу ради тестирања на хламидијалну инфекцију, а који су задовољавали укључујуће и нису имали искућујуће критеријуме је било понуђено учешће у студији. Испитаници су били укључени у студију само ако су на то пристали добровољно, након потписивања формулара Информисаног пристанка уз пуну обавештеност. Писани инфомисани пристанак је обезбедио ординаријући лекар који је био истовремено и истраживач у студији. По обезбеђеном пристанку, прикупљени су анамнестиčки подаци, а након тога испитаницима су биле узети цервикални или уретрални брисеви и узорак крви за даљу анализу. Укључивање је спровођено сукцесивно, према принципу пригодног
узорка, почев од првог дана студије па на даље, до дана када је постигнут укупан број испитаника, а сходно прорачуну величине студијског узорка.

Свим испитаницима су била узета 2 бриса. Први брис, цервикални код жена и уретрални код мушкараца, је био узет помоћу стандардног памучног бриса за бактериолошки и миколошки преглед. Други, брис је био узет помоћу стандардног бриса за PCR, ради детекције специфичних секвенци генома хламидија. Испитаницима брсеви су узимани у Диспанзеру за жене, Дома здравља Крагујевац или Институту за јавно здравље, а узимао их је ординирајући гинеколог или квалификовани медицински техничар. По преузимању брисева у Институту за јавно здравље даљи поступак са узорцима је био спроведен од стране специјалисте медицинске микробиологије или коистраживача који су били укључени у ову студију. Из првог бриса, одмах по пријему урађен је стандардни бактериолошки и миколошки преглед, тест директне имунофлуоресценције (DIF) и брзи имунохроматски теста (EIA) за квалитативно откривање хламидијалних антигена. Други брис смо замрзавали на -20º Целзијуса за накнадно одређивање специфичних секвенци генома хламидија RT-PCR тестом.

Свим испитаницима су били узети и узорци крви из периферне вене, у запремини од 5 mL, према важећим стандардима за биохемијске анализе. Узорци крви испитаница су узимани у Институту за јавно здравље. Узорке је узимао квалификовани медицински техничар, а даљи поступак са узорцима је био спроведен од стране коистраживача укључених у ову студију. Након узорковања и обележавања узорака, крв је била центрифугирана. Након центрифугирања, издвојени серум је био замрзован на -20º Целзијуса за накнадно одређивање серумских параметара хламидијалне инфекције (ЕЛИСА).
3.3. Скрининг тестови

3.3.1. Тест директне имунофлуоресценције за квалитативно одређивање хламидијалних антигена (DIF)

Код свих испитаника одређивано је присуство МОМР антигена C. trachomatis помоћу Chlamydia Cel IF теста (Cellabs Pty Lty, Brookvale, Australia). Тест Chlamydia Cel IF је тест директне имунофлуоресценције за детекцију Chlamydia trachomatis у узорцима пацијената. Реагенс који садржи мишја моноклонска антитела обележена флуоресцентном спречично се везују за МОМР, антиген C. trachomatis у узорку и даје светлозелену флуоресценцију. Квалитет флуоресценције је добар, јер се МОМР подједнако распоређује по хламидијалној мембрани.

Након пријема предметног стакла са узорком, вршена је фиксација метанолом у трајању од 5 минута. Предметно стакло се оцеди и осуши након чега се додаје 25µl реагенса RC1 (Chlamydia cell реагенс), тако да се прекрије површина удубљења. Реагенс RC1 се додаје и на предметно стакло са позитивном контролом на исти начин. Предметна стакла се након тога инкубирају у влажној комори на 37ºС/30 минута. Након инкубације предметна стакла су испирана у кадици са РВS-ом (фосфатни пуфер) један минут. На осушена предметна стакла додавана је по једна кап RMF реагенса (текност за фиксирање). Удубљење се затим прекрива покровним стаклом. Овако припремљен узорак је прегледан коришћењем флуоресцентних микроскопа са имерзијом и увећањем од х600-х1000.

Резултати су очитавани одмах. Елементарна тела се виде као светло-зелене флуоресентне тачкe постављене екстрацелуларно, телацa са дисконтираног образа и лепо се виде у односу на контрасно црвенкасто-браон обојене ћелије. Дијагноза је била позитивна када је у фиксираном и обојеном размазу узорка на предметном стаклу уочено најмање десет флуоресценција. Негативну дијагнозу смо постављали када у фиксираном и обојеном размазу није било флуоресценција, при чему се види бар десет епителних ћелија цервикса. Квалитет ендоцервикалних узорака смо процено присуством и бројем епителних ћелија. (Слика 6.)
Слика 6 Тест директне имунофлуоресценције за квалитативно одређивање хламидијалних антигена – позитиван налаз

3.3.2. Брзи имунохроматографски тест за квалитативно одређивање хламидијалних антигена

Свим испитаницима одређивано је присуство хламидијалних антигена употребом брзог имунохроматографског теста (Ulti med Products GmbH, Ahrensburg, Germany). Брзи тест на хламидију је брзо хроматографско испитивање за квалитативно откривање Chlamydia у узорку испитаника. Овај тест користи поликлонска антитела за детекцију хламидијалног липолисахарида. Ова антитела су обележена ензимом који у реакцији са субстратом, након везивања за специфични антиген, ослобађа боју која се детектује голим оком.

Први корак код овог теста је екстракција хламидијалних антигена из узорка испитаника. У епрувету за екстракцију додати пет пуних капи Реагенса А (0,2М NaOH), који је безбојан. У епрувету убацити брис притиснути дно епрувете и ротирати брис 15 пута, оставити да стоји два минута. Квантитативном пипетом одмерити (до ознаке)
Реагенс Б (0,2N HCL) и додати у епрувету за екстракцију. Раствор ће постати замућен. Понovo убацити брис, притискати дно епрувете и ротирати 15 пута све док раствор не добије зеленкасту боју. Оставити да стоји један минут, након чега добро исцедити и извући брис. На екстракциону епрувету ставити капаљку. На чисту повшину ставити тест плочицу, у поље S накапати пуне три капи, водећи рачуна да нема мехурића ваздуха. Резултат очитати након десет минута. Резултат је тумачен као негативан када се у контролном пољу (С) појави обојена линија, а у тест региону (Т) нема обојених линија. Резултат је позитиван ако се на тест плочки појаве две обојене линије у контролном и у тест пољу.

Слика 7 Браци имунохроматографски тест за квалитативно одреживање хламидијалних антигена: А – позитиван налаз; Б – негативан налаз
3.3.3. Одређивање серумског нивоа антитела на хламидијални МОМР антиген

Код свих испитаника серумски ниво IgA и IgG антитела специфичних за МОМР антиген одређиван је помоћу EUROIMUN комерцијалног ELISA кита (Lubec, Germany).

Серумски ниво IgA и IgG антитела специфичних за МОМР антиген C. trachomatus, одређиван је након разређивања узорака у односу 1:101 са дилуционим пуфером за узорке. Сто микролитара тако припремљеног узорака се додаје у микротитрациону плочу чији су бунарчићи обложени пурификованим МОМР антигеном C. trachomatus. Плоча се након тога инкубира 30 минута на собној температури (18°C-25°C), а потом испере три пута са 450 микролитара пуфера за испирање. Потом се додаје 100µl ензим коњугата (анти-хумана IgA или IgG антитела обложена пероксидазом), и плоча се поново инкубира 30 минута на собној температури. Поступак испирања са 450 микролитара пуфера за испирање се понавља три пута. Након тога се додаје 100µl солуције хромогеног субстрата (TMB-tetramethylbenzidine) и плоча се поново инкубира, у мраку, током 15 минута, на собној температури. На крају, реакција се зауставља додавањем 100µl стоп солуције. Након тога квантификација антитела се врши меренjem интензитета боје узорка у спектрофотометру употребом филтера од 450nm. Резултати су интерпретиранi семиквантитативно за IgA, рачунањем односа вредности екстинције контроле или узорака пацијента и екстинције калибратора 2. Препоруке произвођача за тумачење резултата су: узорци су негативни када је однос <0.8, гранични када је однос >0.8<1.1 и позитивни када је однос >1.1. Резултати за IgG су интерпретиранi квантитативно. Произвођач препоручује следеће тумачење резултата: <16RU/ml негативно, >16< 22RU/ml гранична вредност, >22RU/ml позитивно. (Слика 8.)
3.4. Дијагностички тест RT-PCR

За детекцију DNK *Chlamydia trachomatis* коришћен је RT-PCR тест (Sacace Biotechnologies, Como, Italy). RT-PCR тест је тест амплификације нуклеинских киселина у реалном времену за квалитативно откривање DNK *Chlamydia trachomatis* у узорцима пацијената. RT-PCR представља препоручен дијагностичку методу од стране европског и америчког CDC-a за откривање акутне хламидијалне инфекције, а у нашој студији представља златни стандард.

Откривање *Chlamydia trachomatis* путем ланчане реакције полимеразе, заснива се на истицању специфичног дела генома патогена коришћењем специфичних прајмера. У „Real time PCR“ методи истакнути продукт се детектује коришћењем флуоресцентних боја. Ове боје се користе за олигонуклеотидне тестове, које се везују посебно за наглашене продукте. Мониторинг интензитета флуоресценције у реалном времену омогућава детекцију акумулираних продуката без отварања реакционих цеви након почетка PCR. *Chlamydia trachomatis* RT PCR је квалитативни тест који садржи интерну контролу (IC), која мора бити употребљена у поступку екстракције, у циљу контроле процеса екстракције сваког засебног узорка, као и за идентификацију могуће инхибиције реакције. *Chlamydia trachomatis* RT-PCR опрема користи „Hot Start“, који у великој мери смањује учесталост неспецифично испрајмованих реакција. „Hot Start“ је обезбеђен коришћењем хемијски модификоване полимеразе (TaqF), која се активира загревањем на 95°C у трајању од 15 минута.

3.4.1. Припрема узорака и реагенаса

Раствори за лизирања и испирање треба да буду загрејани на температури од 60-65°C до нестајања кристала леда. Припремити потребан број полипропиленских епрувета, укључујући и једну за негативну контролу екстракције. Усваку епрувату додати интерну контролу и раствор за лизирање. Након тога у одговарајуће епрувете додаје се узорак. *Контроле* се припремају на следећи начин: у епрувету означену као Сneg додаје се негативна контрола из амплификационог сета. Вортексовати епрувете и инкубирајте 5 минута на 65°C. Центрифугирати. Уколико узорак није у потпуности растворен, препоручује се рецентрифугирање епрувета 5 минута на максималној брзини и
пребацаивање супернатанта у нову епрувету ради DNK екстракције. Снажно вортексовати Sorbent реагенс и додати га у сваку епрувету, поново вортексовати и инкубирати све епруве 3 минута на собној температури. Поновити овај корак. Центрифугирати све епруве 30 секунди на 5 000g, а затим користећи пипету са стављеним наставком са аеросолном баријером, пажљиво отклонити и одстранити супернатант из сваке епрувете, без ометања талога. Променити наставке пипете између епрувета. У сваку епруву додати раствор за испирање. Вортексовати интензивно и центрифугирати 30 секунди на 10 000g. Уклонити и одстранити супернатант из сваке епрувете. Поновити корак испирања и инкубирати све епруве са отвореним врхом 5-10 минута на 65˚C. Ресуспендировати талог у DNK-елуенту. Инкубирати 5 минута на 65˚C и повремено вортексовати. Епруве центрифугирати 1 минут на 12 000g. Овако припремљен супернатант садржи DNK спреман за амплификацију. Уколико се амплификација не изводи истог дана када и екстракција, обрађени узорци могу бити чувани на температури 2-8˚C максимално 5 дана или замрзнути на -20/-80˚C.

3.4.2. Протокол

Одмрзнути PCR-mix-2-FRT епрувету. Вортексирати епруве са PCR-mix-1-FRT, PCR-mix-2-FRT, TaqF Јолимеразом, и кратко их центрифугирати. Узети потребан број епрувета за амплификацију DNK клиничких и контролних узорака. За N број реакција (укључујући три контроле), додати у нову епрувету:

10* (N+1) микролитара PCR-mix-1-FRT
5.0*(N+1) микролитара PCR-mix-2-FRT
0,5*(N+1) микролитара TaqF Јолимеразе

Вортексирати епрувету и затим је кратко центрифугирати. Пребацити припремљену микстуру у сваку епрувету. Користећи наставке са аеросол баријером, додати DNK узорак добијен из клиничких или контролних узорака, у стадијуму DNK екстракције у припремљене епруве. Припремити контролне епруве:

- (NCA) - додати DNK буфер у епрувету означену NCA (негативна контрола амплификације)
• (C+) - додати позитивну контролу у епрувету означену C+ (позитивна контрола амплификације)
• (C-) - додати негативну контролу у епрувету означену C- (негативна контрола екстракције)

3.4.3. Амплификација

Креирати температурни профил на инструменту по упутству. Флуоресценција се детектује у другом кораку Cyclung 2 стадијума (60C), на FAM и JOE/Hex/Cy3 каналима. *Chlamydia trachomatis* се детектује на FAM каналу, IC, DNK на JOE/Hex /Cy3 каналу. Подесити инструмент по упутству.

3.4.4. Анализа података

Интезитет сигнала флуоресценција се детектује на два канала:

• Сигнал за производ амплификације DNK *Chlamydia trachomatis* се детектује на FAM каналу.
• Сигнал за продукт амплификације унутрашње контроле (IC) се детектује на JOE/Hex/Cy3 каналу

3.4.5. Интерпретација резултата

Резултати се интерпретирају помоћу софтвера инструмента путем укрштања или неукрштања криве флуоресценције и линије прага.

Принцип интерпретације:

• DNK *Chlamydia trachomatis* је присутна у узорку ако је Ct вредност присутна на FAM каналу. Крива флуоресценције би требало да прелази линију прага у делу експоненцијалног раста флуоресценције.
• DNK *Chlamydia trachomatis* није детектована у узорку ако Ct вредност није присутна FAM каналу (крива флуоресценције не прелази линију прага), док је Ct вредност на JOE каналу испод 33.
• Резултат је невалидан уколико Ct вредност није присутна на FAM каналу и Ct вредност није присутна на JOE каналу или је већа од специфичне граничне вредности (Ct>33). Код таквих узорака је потребно поновити PCR анализу.

Резултат анализе се сматра поузданим, само ако су резултати позитивне и негативне контроле амплификације, као и негативне контроле екстракције, тачни.

<table>
<thead>
<tr>
<th>Ct, Fam</th>
<th>Ct, Hex</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>G1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>16,6</td>
<td>+</td>
</tr>
<tr>
<td>A2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>G3</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>D4</td>
<td>18,0</td>
<td>+</td>
</tr>
<tr>
<td>E4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>F4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>0,0</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>0,1</td>
<td>+</td>
</tr>
<tr>
<td>C5</td>
<td>0,2</td>
<td></td>
</tr>
</tbody>
</table>

Слика 9. RT PCR тест – квалитативно откривање ДНК C. trachomatis позитиван налаз – Ct вредност присутна на FAM каналу
3.5. Економска анализа

Економска анализа је сачињена на основу сценарија дијагностике и лечења хламидијалне инфекције генитуорунарног тракта у условима рутинске клиничке праксе у примарној здравственој заштити (Шема 1.). Економски модел претпоставља иницијални преглед свих болесника и њихово тестирање одн. микробиолошку дијагностику на присуство урогениталне хламидијалне инфекције, једном од четири дијагностичке методе. Даље разврставање болесника је дефинисано резултатима теста у четири подгрупе: лажно негативни, лажно позитивни, стварно позитивни и стварно негативни. Непосредном лечењу приступају пациенти којима је тест био лажно и стварно позитиван и којима лекар, при контролном прегледу прописује доксициклин. У ове две групе, после спроведеног лечења трећег месеца ће се радити ретестирање. Сценарио предвиђа да ће приликом ретестирања тест код свих ових пацијената бити негатivan.

Шема 1. Сценарио дијагностике и лечења хламидијалне инфекције генитуорунарног тракта у условима рутинске клиничке праксе у примарној здравственој заштити

Подгрупа пацијената која је стварно негативним резултатима тестирања нећe имати даљу дијагностику и терапију, тако да ћe се њихово учешћe у економском моделу одвijати унутар једног, иницијалног циклуса. С друге стране, претпостављa се да ћe се подгрупа испитаника са иницијално lажно негативним налазима после извесног времена поново јавити лекару због неизлечene инфекције и рецидива или погоршања симптома. Ови испитаници ћe бити подвргнути новом циклусу дијагностике као на почетку модела
(уз коришћење истог типа теста као у иницијалној евалуацији), уз додатни циклус у зависности од резултата дијагностичког теста.

У целини узев, економски сценарно предвиђа три циклуса: један за болеснике са иницијално стварно негативним налазом (иницијални), два за болеснике са лажно и стварно позитивним (иницијални, накнадни) и три за болеснике са иницијално лажно негативним налазом који на ретестирању буду имали лажно позитивне и лажно негативне налазе (иницијални, поновљени, накнадни циклус). Вероватноћа расподеле болесника унутар грана економског модела и током циклуса ће следити основе резултате студије (в. раније). Трошкови лечања болесника са иницијално лажно позитивним и лажно негативним налазима током другог односно током другог и трећег циклуса ће се сматрати индиректним здравственим трошковима.

На основу низа сродних података, израчунате су средње вредности и доња и горња вредност 95% интервала поверења.

3.6. Статистичка обрада података

Величина узорка је утврђена на основу претпоставке слagaња независне варијабле (RT-PCR) и зависних варијабли добијених различитим студијским методама (DIF, EIA, ELISA). Претпостављено је да ће слагање између метода бити у 90% узорака, уз очекивану разлику од 5% између нулте (методе су упоредиве-постоји слагање резултата теста) и
радне хипотезе (методе нису упоредиве-не постоји слагање резултата теста). Према подацима светске здравствене организације маргинална преваленца хламидијалне инфекције за регион Европе износи 10% (позитиван налаз) и 90% (негативан налаз) (159). За прорачун студијског узорка је коришћен одговарајући, претходно публикован номограм прорачуна узорка статистичког теста слагања дијагностичких метода за капа статистику (160). Студијски узорак је прорачунат узимајући алфа грешку од 0.05, снагу студије од 0.90. Сходно наведеном, утврђен је узорак од најмање 210 испитаника.

<table>
<thead>
<tr>
<th>Статистика</th>
<th>Формула</th>
</tr>
</thead>
</table>
| Сензитивност | \[
| | \frac{a}{a+b} |
| Специфичност | \[
| | \frac{d}{c+d} |
| Позитиван однос вероватноће | \[
| | \frac{\text{сензитивност}}{1 - \text{специфичност}} |
| Негативан однос вероватноће | \[
| | \frac{1 - \text{специфичност}}{\text{сензитивност}} |
| Преваленца болести | \[
| | \frac{a+b}{a+b+c+d} |
| Позитивна предиктивна вредност | \[
| | \frac{a}{a+c} |
| Негативна предиктивна вредност | \[
<p>| | \frac{d}{b+d} |
| Јуденов индекс | (сензитивност + специфичност - 100) |</p>
<table>
<thead>
<tr>
<th>Статистика</th>
<th>Формула</th>
</tr>
</thead>
<tbody>
<tr>
<td>Продирени Јуденов индекс</td>
<td>(сензитивност + специфичност + PPV + NPV - 200)</td>
</tr>
<tr>
<td>Дијагностичка тачност</td>
<td>(\frac{a + d}{a + b + c + d})</td>
</tr>
</tbody>
</table>

а – стварно позитивни; b – лажно негативни; c – лажно позитивни; d – стварно негативни

Сензитивност и специфичност појединих параметара у дискриминацији клиничких исхода је одређивана тзв. ROC анализом. За статистички значајну разлику у добијеним вредностима између група сматрано је када је \(p<0.05 \), док је статистички веома значајна разлика била када је \(p<0.01 \).
4. РЕЗУЛТАТИ

4.1. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са результатима добијеним употребом других дијагностичких тестова (DIF, BT, ELISA)

За детекцију хламидијалне инфекције коришћена су четири теста: тест директне имунофлуоресценције (DIF), брзи тест (BT), ELISA тест (IgA и IgG) и реакција ланчане полимеризације у реалном времену (RT - PCR). (Графикон 1.)

Графикон 1. Упоредни резултати тестова за детекцију *C. trachomatis*

Тестом директне имунофлуоресценције одређивано је присуство антигена *C. trachomatis* у узорку испитаника. Од укупног броја испитаника који су укључени у студију применом ове методе хламидијална инфекција је детектована код 30,4% (68/224) испитаника, док је код 69,6% (156/224) испитаника резултат био негативан.
Брзим тестом је такође одређивано присуство хламидијалних антигена, али је овим тестом хламидијална инфекција детектована код свега 1,4% (3/214) испитаника, док је резултат био негативан код 98,6% (211/214) испитаника. ELISA тестом одређивано је присуство анти-хламидијалних антитела у серуму пацијената. Анализирано је присуство серумских IgA и IgG антитела специфичних за MOMP антиген C. trachomatis. IgA серопозитивност на хламидијалне антигене је забележена код 8,1% (18/221) испитаника, док је 91,9% испитаника било серонегативно. У односу на IgA серопозитивне испитанике, забележен је нешто већи процент IgG серопозитивних испитаника и то 17,2% (38/221) њих, док је 82,8% (183/221) испитаника било серонегативно.

RT-PCR тестом је одређивано присуство специфичних секвенци генома C. trachomatis у узорку испитаника. Овим тестом који иначе представља и златни стандард, хламидијална инфекција је детектована код 4,4% (9/205) испитаника, а код 95,6% испитаника резултат тести је био негативан.

4.1.1. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом тестова за детекцију хламидијалних антигена (DIF, BT)

У даљем приказу резултата анализиране су само пацијенти који су имали комплетиране резултате за све дијагностичке тестове (n=201). На Графикону 2. приказан су резултати детекције C. trachomatis DIF и RT-PCR (златни стандард) методом. Применом χ2 теста тестирали смо асоцијацију између резултата добијених помоћу ове две методе, а на основу добијених резултата утврђено је постојање лоших асоцијације између ових резултата ($\chi^2 = 303; df = 1; p < 0.001$).
Графикон 2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним тестом директне имунофлуоресценције

У Табели 2. приказани су нумерички подаци добијени употребом DIF и RT-PCR методе. Упоређујући резултате добијене употребом ове две методе, уочљиво је да је од 9 узорака који су на основу RT-PCR методе били сврстани у групу позитивних налаза, DIF методом потврђена дијагноза код 7 узорака, док су 2 узорка класификована као негативна, што даје процент неслагања од 22,2% (лажно негативни налази). Са друге стране, од 192 узорка који су RT-PCR методом дефинисана као негативни, чак 53 је употребом DIF методе сврстано у групу позитивних налаза чиме процент неслагања износи 27,6% (лажно позитивни налази). Сумирајући ове резултате, долазимо до укупног слагања резултата (ог enil. Overall Agreement – ORA) од 72,6% коме одговарају вредности укупног неслагања од 27,4%. Релативно низак процент укупног слагања резултата добијених DIF и RT-PCR методом је потврђен применом κappa статистике којом је степен слагања између категоријских параметара добијених овим методама изказан путем индекса κappa износио свега 0.1356.
Табела 2. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним тестом директне имунофлуоресценције

<table>
<thead>
<tr>
<th></th>
<th>DIF</th>
<th>RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Позитивни</td>
<td>Негативни</td>
</tr>
<tr>
<td>Позитивни</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Негативни</td>
<td>53</td>
<td>139</td>
</tr>
<tr>
<td>Укупно</td>
<td>60</td>
<td>141</td>
</tr>
</tbody>
</table>

ORA 0.726
Карпа 0.1356
χ² 303; p < 0.001

На Графику 3. и Табели 3. приказан је резултат детекције *C. trachomatis* BT и RT-PCR методом. Применом χ² теста тестирали смо асоцијацију између резултата добијених помоћу ове две методе, а на основу добијених резултата утврђено је постојање слабе асоцијације између ових резултата (χ² = 4.19; df = 1; p = 0.041). На графикону 3. је јасно уочљиво да је боља асоцијација показана за негативне (100%) него позитивне (33%) резултате.

Графикон 3. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним брзим тестом

У Табели 3. приказан су апсолутне вредности добијене употребом BT и RT-PCR методе. Упоређивањем резултата добијених употребом ове две дијагностичке методе,
примећујемо да је од 9 узорака који су RT-PCR методом категорисано као позитиван налаз, BT методом дијагноза потврђена код свега 3 узорка, док су 6 узорака категорисани као негативан налаз, што даје проценат неслагања од чак 66,7% (ложно негативни резултати). За разлику од позитивних налаза, од 192 узорка који су RT-PCR методом дефинисана као негативни налаз, BT методом негативан налаз је потврђен код свих 192 узорка, тако да у групи негативних испитања практично немамо неслагање резултата (нема лажно позитивних резултата). На крају, долазимо до укупног слагања резултата (ORA) у 97% случајева што одговара вредностима укупног неслагања резултата од 3%. Висок проценат укупног слагања резултата добијених BT и RT-PCR методом је потврђен применом карпа статистике којом је степен слагања између категоријских параметара добијених овим методама исказан путем индекса карпа који износи 0.4885.

Табела 3. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним брзим тестом

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>0</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Укупно</td>
<td>3</td>
<td>198</td>
<td>201</td>
</tr>
<tr>
<td>ORA</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кара</td>
<td>0.4885</td>
<td></td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td>4.19; p = 0.041</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1.2. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA тестова за детекцију серумског нивоа IgA и IgG антитела на хламидијални MOMP антиген

Хламидијалну инфекцију детектовали смо и на основу серолошког одговора, односно серумског нивоа IgA и IgG антитела. Упоређујући резултате RT-PCR теста са резултатима добијеним употребом ELISA теста (IgA антитела), утврђено је постојање слабог слагања добијених резултата што потврђују и резултати χ^2 теста ($\chi^2 = 4.19$; df = 1; $p < 0.041$). Даље, одређујући слагање између позитивних и негативних налаза примећујемо да је слагање било боље код негативних (94,3%) него код позитивних налаза (44,4%) (Графикон 4).
Графикон 4. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgA антитела на хламидијални MOMP антиген

У Табели 4. приказани су подаци изражени у апсолутним бројевима добијених употребом ELISA (IgA) и RT-PCR методе. Анализирајући податке добијене применом ове две дијагностичке методе, уочавамо да је од 9 узорака који су на основу RT-PCR теста класификовани као позитивни, ELISA (IgA) тестом дијагноза потврђена код свега 4 узорка, док се код 5 узорака не слаже са резултатима RT-PCR теста и сврстава их у групу IgA негативних налаза што чини неслагање од 55,6% (лажно негативни резултати). Насупрот резултатима добијеним у групи позитивних налаза, у групи налаза који су RT-PCR тестом проглашени за негативне је другачије кретање. Наиме, од 192 негативна налаза, само 11 њих је сврстано ELISA тестом у групу IgA позитивних и даје процент неслагања од 5,7% (лажно позитивни резултати). Финално, долазимо до укупног слагања резултата (ORA) у 92% случајева што одговара вредностима неслагања од 8%. Иако релативно висок, процент укупног слагања резултата добијених коришћењем ове две методе, има је праћен нешто нижим вредностима κappa индекса који износи 0,2938.
Табела 4. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgA антитела на хламидијални MOMP антиген

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>IgA</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>Позитивни 4</td>
<td>Негативни 5</td>
<td>Укупно 9</td>
</tr>
<tr>
<td>Негативни</td>
<td>11</td>
<td>181</td>
<td>192</td>
</tr>
<tr>
<td>Укупно</td>
<td>15</td>
<td>186</td>
<td>201</td>
</tr>
</tbody>
</table>

ORA 0.92
Капра 0.2938
$\chi^2 4.19; p = 0.041$

Посматрајући резултате детекције *C. trachomatis* добијене ELISA (IgG) и RT-PCR методом, примећујемо да постоји лоша сагласност између добијених резултата. Резултати χ^2 теста такође указују на постојање лоше сагласности између резултата добијених коришћењем споменутих тестова ($\chi^2 = 67; df = 1; p < 0.001$). Даљом анализом резултата јасно запажамо да је боља сагласност показана за негативне (85,9%) него за позитивне налазе (66,7%). (Графikon 5)

Графikon 5. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgG антитела на хламидијални MOMP антиген
Анализирајући податке добијене употребом ELISA (IgG) и RT-PCR методе изражене у апсолутним вредностима долазимо до закључка, да је од 9 узорака који су коришћењем RT-PCR методе сврстани у групу позитивних налаза, ELISA (IgG) тест сагласан са дијагнозом код 6 узорака, док су 3 узорка сврстана у групу негативних резултата, што даје проценат неслагања од 33,3% (лажно негативни резултати). Код негативних резултата проценат неслагања је упечатљиво мањи у односу на позитивне и износи 14,1% (лажно позитивни резултати). Заправо, од 192 узорка који су RT-PCR методом сврстани у групу негативних налаза 27 њих је употребом ELISA (IgG) теста проглашено за позитивне налазе. Даље, долазимо до сумарног слагања резултата (ORA) у 85,1 % случајева што одговара вредностима укупног неслагања од 14,9%. Степен слагања између категоријских параметара добијених овим методама је изказан путем индекса kappa који износи 0,2317. (Табела 5)

Табела 5. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним употребом ELISA теста за детекцију серумског нивоа IgG антитела на хламидијални MOMP антиген

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>27</td>
<td>165</td>
<td>192</td>
</tr>
<tr>
<td>Укупно</td>
<td>33</td>
<td>168</td>
<td>201</td>
</tr>
<tr>
<td>ORA</td>
<td></td>
<td>0.851</td>
<td></td>
</tr>
<tr>
<td>Каппа</td>
<td></td>
<td>0.2317</td>
<td></td>
</tr>
<tr>
<td>χ^2</td>
<td></td>
<td>67; p < 0.001</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3. Слагање резултата RT-PCR теста за детекцију C. trachomatis са результатима добијеним комбинацијом тестова – позитивна два или више теста, позитиван било који тест

Након детаљне анализе дијаганостичке ефикасности индивидуалних тестова покушали смо комбинацијом тестова да поправимо ефикасност детекције хламидијалне инфекције у односу на појединачне тестове. Циљ споменутих комбинација је био да проценимо клиничку ефикасност сваке комбинације, одговоримо на питања могу ли оне побољшати откривање гениталне хламидије и да ли су ефикасније од тренутне праксе
појединачних тестова, при томе водећи рачуна и о економској исплативости. Комбинације смо поделили у две групе и у свакој grupi урадили све могуће комбинације.

4.1.3.1. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом тестова – позитивна два или више теста

На Графikonu 6. и Табели 6. приказан су резултати детекције C. trachomatis комбинацијом „позитивна два или више теста“ и RT-PCR теста. Комбинацијом „позитивна два или више теста“ узорци испитаника су били позитивни на хламидијалну инфекцију када су сви тестови који чине комбинацију били позитивни. Анализирали смо слагање резултата једанаест комбинација са резултатима добијеним RT-PCR тестом. Уочавамо да између наведених комбинација тестова постоје јасно изражене варијације тако да ћемо у даљем приказу резултата анализирати само one комбинације које показују најбоље вредности дијагностичких параметара.
Графикон 6. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“
Табела 6. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитивна два или више теста“

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>DIF+IgA</th>
<th>DIF+IgG</th>
<th>DIF+BT+IgA</th>
<th>DIF+BT+IgG</th>
<th>DIF+BT+IgA+IgG</th>
<th>BT+IgA</th>
<th>BT+IgG</th>
<th>BT+IgA+IgG</th>
<th>IgA+IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пол.</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
<td>Σ</td>
</tr>
<tr>
<td>Нег.</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Табела</td>
<td>6</td>
<td>186</td>
<td>192</td>
<td>14</td>
<td>176</td>
<td>192</td>
<td>0</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Σ</td>
<td>8</td>
<td>193</td>
<td>201</td>
<td>19</td>
<td>182</td>
<td>201</td>
<td>3</td>
<td>198</td>
<td>201</td>
</tr>
<tr>
<td>ORA</td>
<td>0.935</td>
<td>0.910</td>
<td>0.97</td>
<td>0.96</td>
<td>0.970</td>
<td>0.955</td>
<td>0.960</td>
<td>0.960</td>
<td>0.970</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.2148</td>
<td>0.3156</td>
<td>0.4885</td>
<td>0.1928</td>
<td>0.4885</td>
<td>0.2881</td>
<td>0.1928</td>
<td>0.4885</td>
<td>0.1928</td>
</tr>
<tr>
<td>χ²</td>
<td>0.116;p=0.733</td>
<td>11.6;p=0.001</td>
<td>4.19;p=0.41</td>
<td>7.3;p=0.007</td>
<td>4.19;p=0.041</td>
<td>2.91;p=0.088</td>
<td>7.44;p=0.006</td>
<td>7.44;p=0.006</td>
<td>0.116;p=0.733</td>
</tr>
</tbody>
</table>
Од укупно једанаест анализираних комбинација вредности статистичког теста слагања се крећу од 91% - 97%, док су вредности *kappa* индекса од 0,19-0,4885 при чему се две комбинације (DIF+BT; BT+IgG) издвајају као најбоље и показују идентичне вредности дијагностичких параметара. Комбинацијом три дијагностичка теста од којих је један BT (DIF+BT+IgG; BT+IgA+IgG) такође добијамо сличне или исте вредности дијагностичких параметара. (Табела 6.) У даљем излагању приказаћемо комбинацију која показује најбоље слагање.

На Графикону 7. приказани су резултати детекције *C. trachomatis* DIF+BT и RT-PCR методом. Ако направимо паралелу између резултата добијених на овај начин јасно уочавамо да постоји лоше поклапање добијених резултата, што потврђују и резултати *χ²* теста (*χ²* = 4,19; df = 1; p < 0.041). Евидентно је да слабо поклапање резултата постоји, али са јасном разликом између позитивних (33,3%) и негативних налаза (100%).

Графикон 7. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним комбинацијом „позитивна два или више теста“
Упоредном анализом резултата добијених употребом DIF+BT и RT-PCR методом, примећујемо да је од 9 узорака који су на основу RT-PCR теста проглашени за позитивне комбинација DIF+BT одобрава дијагнозу код 3 узорка, док су 6 узорака проглашена за негативне што даје проценат неслагања од 66,6% (лажно негативни резултати). Обзиром да су се ове две дијагностичке методе сложиле у дијагнози негативних резултата, нема лажно позитивних резултата. На крају, долазимо до сумарног слагања од 97% што одвара вредностима укупног неслагања од 3%. Резултати добијени DIF+BT и RT-PCR методом показују висок проценат укупног слагања што потврђује и индекс \textit{kappa} који износи 0,4885. (Табела 7.)

Таbела 7. Слагање резултата RT-PCR теста за детекцију \textit{C. trachomatis} са резултатима добијеним комбинацијом „позитивна два или више теста“

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>DIF+BT</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Позитивни</td>
<td>Негативни</td>
<td>Укупно</td>
</tr>
<tr>
<td>Позитивни</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>0</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Укупно</td>
<td>3</td>
<td>198</td>
<td>201</td>
</tr>
</tbody>
</table>

ORA 0.970
Карпа 0.4885
\chi ^2 4.19; p = 0.041

4.1.3.2. Слагање резултата RT-PCR теста за детекцију \textit{C. trachomatis} са резултатима добијеним комбинацијом тестова – позитиван било који тест

Детаљно емо анализирали слагање резултата детекције \textit{C. trachomatis} добијених комбинацијом „позитиван било који тест“ и RT-PCR методом. Узорци испитаника су сматрани позитивним на хламидијалну инфекцију када је било који тест који чини комбинацију био позитиван. У овој групи испитали смо 11 комбинација и анализирали слагање резултата сваке комбинације са златним стандартом (Графикон 8).
Графикон 8. Слагање резултата RT-PCR теста за детекцију C. trachomatis са резултатима добијеним комбинацијом „позитиван било који тест“
Табела 8. Слагање резултата RT-PCR теста за детекцију *C. trachomatis* са резултатима добијеним комбинацијом „позитивни било који тест“

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>DIF/IgA</th>
<th>DIF/IgG</th>
<th>DIF/BT</th>
<th>DIF/BT/IgA</th>
<th>DIF/IgA +IgG</th>
<th>DIF/IgA/IgG</th>
<th>BT/IgA</th>
<th>BT/IgG</th>
<th>BT/IgA/IgG</th>
<th>IgA/IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Σ</td>
</tr>
<tr>
<td>Поз.</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Нег.</td>
<td>66</td>
<td>302</td>
<td>124</td>
<td>124</td>
<td>65</td>
<td>127</td>
<td>192</td>
<td>69</td>
<td>123</td>
<td>192</td>
</tr>
<tr>
<td>Σ</td>
<td>69</td>
<td>302</td>
<td>124</td>
<td>124</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>ORA</td>
<td>0,701</td>
<td>0,657</td>
<td>0,721</td>
<td>0,677</td>
<td>0,657</td>
<td>0,930</td>
<td>0,851</td>
<td>0,826</td>
<td>0,826</td>
<td></td>
</tr>
<tr>
<td>Капра</td>
<td>0,1646</td>
<td>0,1176</td>
<td>0,1323</td>
<td>0,1176</td>
<td>0,1489</td>
<td>0,1377</td>
<td>0,4280</td>
<td>0,237</td>
<td>0,2294</td>
<td>0,2294</td>
</tr>
<tr>
<td>χ²</td>
<td>419; p<0.001</td>
<td>522; p<0.001</td>
<td>315; p<0.001</td>
<td>419; p<0.001</td>
<td>522; p<0.001</td>
<td>522; p<0.001</td>
<td>554; p<0.001</td>
<td>7,44; p=0.006</td>
<td>67; p<0.001</td>
<td>112; p<0.001</td>
</tr>
</tbody>
</table>
У Табели 8. приказани су нумерички подаци добијени комбинацијом „позитиван било који тест“ и RT-PCR методом. Такође је анализирано 11 комбинација код којих се вредности ORA крећу од 65.7%-93%, а вредности индекса \(\kappa \) од 0,1176-0,4280. На основу вредности дијагностичких параметара, одабраћемо и приказати најбољу комбинацију тестова у даљем приказу резултата.

Компарацијом резултата детекције \(C. trachomatis \) добијених комбинацијом тестова BT/IgA и RT-PCR тестом, долазимо до закључка да постоји лоше подударање резултата добијених употребом ове две методе, што подржавају резултати \(\chi^2 \)-теста (\(\chi^2 = 7,44; \text{df} = 1; p < 0.006 \)). Јасно је да лоше слагање резултата постоји, уз напомену да је процент слагања знатно већи у групи негативних налаза (94,3%) у односу на групу позитивних налаза (66,7%). (Графикон 9.)

Графикон 9. Слагање резултата RT-PCR теста за детекцију \(C. trachomatis \) са резултатима добијеним комбинацијом „позитиван било који тест“

Од укупног броја испитаника који су се тестирали на хламидијалну инфекцију BT/IgA комбинацијом и RT-PCR методом, инфекција је потврђена RT-PCR методом код 9 испитаника, а комбинација BT/IgA је потврдила присуство инфекције код 6 испитаника, док су 3 класификована као негативна што даје процент неслагања од 33,3% (лажно
негативни резултати). Од 192 узорка који су RT-PCR тестом свrstана у групу негативних, свега 11 је употребом комбинације BT/IgA распоређено у групу позитивних налаза што даје низак процент неслагања од 5,7% (лажно позитивни налази). На крају, долазимо до збирног слагања резултата од 93% што одговара вредностима укупног слагања од 7%. Висок процент укупног слагања резултата добијеним комбинацијом BT/IgA и RT-PCR методом је потврђен и \(\text{kappa} \) статистиком односно \(\text{kappa} \) индексом који износи 0,4280. (Тabela 9.)

Табела 9. Слагање резултата RT-PCR теста за детекцију \(C. trachomatis \) са резултатима добијеним комбинацијом „позитивни било који тест“

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>6</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>11</td>
<td>181</td>
<td>192</td>
</tr>
<tr>
<td>Укупно</td>
<td>17</td>
<td>184</td>
<td>201</td>
</tr>
</tbody>
</table>

\(\text{ORA} \) 0.930
Карпа 0.4280
\(\chi^2 \) 7.44; \(p = 0.006 \)

4.2. Дијагностичка ефикасност тестова

Након опсежне анализе резултата слагања RT-PCR теста за детекцију \(C. trachomatis \), који је у нашој студији коришћен као златни стандард, са резултатима добијеним употребом појединачних скрининг тестова (DIF, BT, ELISA – IgA и IgG) као и са резултатима добијеним комбинацијом тестова „позитивна два или више теста“ и „позитиван било који тест“ испитали смо и дијагностичку ефикасност тестова и комбинација тестова.

4.2.1. Дијагностичка ефикасност појединачних тестова (DIF, BT, ELISA)

На основу добијених вредности сензитивности, специфичности, позитивне предиктивне вредности (PPV), негативне предиктивне вредности (NPV) и других параметара одређивали смо дијагностичку ефикасност најчешће коришћених тестова у досадањашој прaksi за дијагнозу хламидијалне инфекције. Сензитивност анализираних тестова креће се од 33,3% - 77,8%. DIF метода показује највећи процент сензитивности
од 77,8%. ELISA (IgG) тест показује бољу сензитивност (66,7%) у односу на ELISA (IgA), (44,4%) а убедљиво најниже вредности сензитивности показује BT (33,3%). Све методе одржавају високе вредности специфичности (72,4% - 100%) и негативне предиктивне вредности (96,9% - 98,6%). Међутим, убедљиво највишу специфичност има BT (100%), и тако високу специфичност прати и висока позитивна предиктивна врдности (100%). У циљу одабира теста који показује најбољу дијагностичку ефикасност, израчунали смо Јуденов индекс који одрађува најбољи баланс сензитивности и специфичности. Према Јуденовом индексу, ELISA (IgG) (52,6%) и DIF (50,2%) методе се издвајају и показују најбољу равнотежу сензитивности и специфичности. Дање, како би поред сензитивности и специфичности узели у обзир позитивну и негативну предиктивну вредност, израчунали смо и проширени Јуденов индекс. Од свих анализираних тестова BT показује највиши проширени Јуденов индекс од 130,3% као и дијагностичку тачност од 97%. (Табела 10.)

Табела 10. Дијагностичка ефикасност појединачних тестова (DIF, BT, ELISA) за детекцију C. trachomatis

<table>
<thead>
<tr>
<th>Статистика</th>
<th>DIF</th>
<th>RT</th>
<th>IgA</th>
<th>IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сензитивност</td>
<td>77,8%</td>
<td>33,3%</td>
<td>44,4%</td>
<td>66,7%</td>
</tr>
<tr>
<td>Специфичност</td>
<td>72,4%</td>
<td>100,0%</td>
<td>94,3%</td>
<td>85,9%</td>
</tr>
<tr>
<td>Позитиван однос вероватноће</td>
<td>2,8</td>
<td>/</td>
<td>7,8</td>
<td>4,7</td>
</tr>
<tr>
<td>Негативан однос вероватноће</td>
<td>0,3</td>
<td>0,7%</td>
<td>0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>Преваленц болести</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
</tr>
<tr>
<td>Позитивна предиктивна врдности</td>
<td>11,7%</td>
<td>100,0%</td>
<td>26,7%</td>
<td>18,2%</td>
</tr>
<tr>
<td>Негативна предиктивна врдности</td>
<td>98,6%</td>
<td>96,9%</td>
<td>97,3%</td>
<td>98,2%</td>
</tr>
<tr>
<td>Јуденов индекс</td>
<td>50,2%</td>
<td>33,3%</td>
<td>38,7%</td>
<td>52,6%</td>
</tr>
<tr>
<td>Проширени Јуденов индекс</td>
<td>60,4%</td>
<td>130,3%</td>
<td>62,7%</td>
<td>69,0%</td>
</tr>
<tr>
<td>Дијагностичка тачност</td>
<td>72,6%</td>
<td>97,0%</td>
<td>92,0%</td>
<td>85,1%</td>
</tr>
</tbody>
</table>
4.2.2. Дијагностичка ефикасност комбинације тестова - „позитивна два или више теста“

Комбинацијом тестова „позитивна два или више теста“ (Тabela 10) очували смо високе вредности специфичности (92,7% - 100%), али уз знатан пад сензитивности (11,1% - 55,6%). Комбинација DIF+IgG има највећи процент сензитивности од 55,6% уз високу специфичност од 92,7%, све остале комбинације показују ниску сензитивност уз високу специфичност. Према вредностима Јуденовог индекса и даље се издваја комбинација DIF+IgG (48,3%) која показује и најбоље избалансиран однос сензитивности и специфичности. Ако узмемо у обзир PPV и NPV односно израчунамо проширен Јуденов индекс долази до промене ситуације. Наиме, комбинације DIF+BT, DIF+BT+IgG, BT+IgG уз ниску сензитивност, али високе вредности специфичности, PPV и NPV показују највеће вредности проширеног Јуденовог индекса од 130,3% уз високе вредности укупне дијагностичке тачности од 97%. (Тabela 11.)
<table>
<thead>
<tr>
<th>Статистика</th>
<th>$DIF+IgA$</th>
<th>$DIF+IgG$</th>
<th>$DIF+BT$</th>
<th>$DIF+BT+IgA$</th>
<th>$DIF+BT+IgG$</th>
<th>$DIF+BT+IgA+IgG$</th>
<th>$BT+IgA$</th>
<th>$BT+IgG$</th>
<th>$BT+IgA+IgG$</th>
<th>$IgA+IgG$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сензитивност</td>
<td>22,2%</td>
<td>55,6%</td>
<td>33,3%</td>
<td>11,1%</td>
<td>33,3%</td>
<td>22,2%</td>
<td>11,1%</td>
<td>11,1%</td>
<td>33,3%</td>
<td>11,1%</td>
</tr>
<tr>
<td>Специфичност</td>
<td>96,9%</td>
<td>92,7%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>98,9%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>97,4%</td>
</tr>
<tr>
<td>Позитиван однос вероватности</td>
<td>7,1</td>
<td>7,6</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>21,3</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/ 12,8</td>
</tr>
<tr>
<td>Негативан однос вероватности</td>
<td>0,8</td>
<td>0,5</td>
<td>0,7</td>
<td>0,9</td>
<td>0,7</td>
<td>0,8</td>
<td>0,9</td>
<td>0,7</td>
<td>0,9</td>
<td>0,7</td>
</tr>
<tr>
<td>Преваленца болести</td>
<td>4,5%</td>
</tr>
<tr>
<td>Позитивна предиктивна вредност</td>
<td>25,0%</td>
<td>26,3%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>50,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
<td>37,5%</td>
</tr>
<tr>
<td>Негативна предиктивна вредност</td>
<td>96,4%</td>
<td>97,8%</td>
<td>97,0%</td>
<td>96,0%</td>
<td>97,0%</td>
<td>96,5%</td>
<td>96,0%</td>
<td>96,7%</td>
<td>96,0%</td>
<td>96,9%</td>
</tr>
<tr>
<td>Јуденов индекс</td>
<td>19,1%</td>
<td>48,3%</td>
<td>33,3%</td>
<td>11,0%</td>
<td>33,3%</td>
<td>21,2%</td>
<td>11,1%</td>
<td>11,1%</td>
<td>33,3%</td>
<td>11,1%</td>
</tr>
<tr>
<td>Простиран Јуденов индекс</td>
<td>40,5%</td>
<td>72,4%</td>
<td>130,3%</td>
<td>107,0%</td>
<td>130,3%</td>
<td>67,7%</td>
<td>107,1%</td>
<td>107,1%</td>
<td>130,3%</td>
<td>65,1%</td>
</tr>
<tr>
<td>Дијагностичка тачност</td>
<td>93,5%</td>
<td>91,0%</td>
<td>97,0%</td>
<td>96,0%</td>
<td>97,0%</td>
<td>95,5%</td>
<td>96,0%</td>
<td>97,0%</td>
<td>96,0%</td>
<td>94,5%</td>
</tr>
</tbody>
</table>
4.2.3. Дијагностичка ефикасност комбинације тестова - „позитиван било који тест“

Табела 12. приказује сензитивност, специфичност, позитивну и негативну предиктивну вредност и остала параметре дијагностичке ефикасности комбинације тестова „позитиван било који тест“. На овај начин поправили смо вредности сензитивности (66,7% - 100%) уз блажи пад специфичности (64,1% - 94,3%). Комбинације DIF/IgA, DIF/BT/IgA и DIF/IgA/IgG показују супериорну сензитивност од 100% уз задовољавајућу специфичност преко 60%. Споменутим комбинацијама приближили смо вредности сензитивности и специфичности, односно довели смо их у бољу равнотежу. Према Јуденовом индексу комбинације DIF/IgA, DIF/BT/IgA (68,8%) показују најбољи баланс сензитивности и специфичности. PPV вредност свих анализираних комбинација тестова је драстично пала (10,5% - 35,3%) док је NPV задржала високе вредности (98,2% - 100%). На основу резултата проширеног Јуденовог индекса узимајући у обзир PPV и NPV комбинација BT/IgA показује највише вредности од 94,6%, као и највише вредности укупне дијагностичке тачности од 93,0%.
Таблица 12. Дијагностичка ефикасност комбинације тестова "позитиван било кој тест" за детекцију C. trachomatis

<table>
<thead>
<tr>
<th>Статистика</th>
<th>DIF/IgA</th>
<th>DIF/IgG</th>
<th>DIF/BT</th>
<th>DIF/BT/IgA</th>
<th>DIF/BT/IgG</th>
<th>DIF/IgA/IgG</th>
<th>DIF/BT/IgA/IgG</th>
<th>BT/IgA</th>
<th>BT/IgG</th>
<th>BT/IgA/IgG</th>
<th>IgA/IgG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сензитивност</td>
<td>100.0%</td>
<td>88.9%</td>
<td>77.8%</td>
<td>100.0%</td>
<td>88.9%</td>
<td>100.0%</td>
<td>66.7%</td>
<td>66.7%</td>
<td>77.8%</td>
<td>77.8%</td>
<td></td>
</tr>
<tr>
<td>Специфичност</td>
<td>68.8%</td>
<td>64.6%</td>
<td>71.9%</td>
<td>68.8%</td>
<td>64.6%</td>
<td>66.2%</td>
<td>64.1%</td>
<td>94.3%</td>
<td>85.9%</td>
<td>82.8%</td>
<td>82.8%</td>
</tr>
<tr>
<td>Позитиван однос вероватноће</td>
<td>3.2</td>
<td>2.5</td>
<td>2.8</td>
<td>3.2</td>
<td>2.5</td>
<td>2.8</td>
<td>11.6</td>
<td>4.7</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>Негативан однос вероватноће</td>
<td>0</td>
<td>0.2</td>
<td>0.3</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>Преваленци болести</td>
<td>4.5%</td>
</tr>
<tr>
<td>Позитивна предиктивна вредност</td>
<td>13.0%</td>
<td>10.5%</td>
<td>11.5%</td>
<td>13.0%</td>
<td>10.5%</td>
<td>12.2%</td>
<td>11.5%</td>
<td>35.3%</td>
<td>18.2%</td>
<td>17.5%</td>
<td>17.5%</td>
</tr>
<tr>
<td>Негативна предиктивна вредност</td>
<td>100.0%</td>
<td>99.2%</td>
<td>98.6%</td>
<td>100.0%</td>
<td>99.2%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>98.4%</td>
<td>98.2%</td>
<td>98.8%</td>
<td>98.8%</td>
</tr>
<tr>
<td>Јуденов индекс</td>
<td>68.8%</td>
<td>53.5%</td>
<td>49.7%</td>
<td>68.8%</td>
<td>53.5%</td>
<td>66.1%</td>
<td>64.1%</td>
<td>60.9%</td>
<td>52.6%</td>
<td>60.6%</td>
<td>60.6%</td>
</tr>
<tr>
<td>Проширен Јуденов индекс</td>
<td>81.8%</td>
<td>63.2%</td>
<td>59.7%</td>
<td>81.8%</td>
<td>63.2%</td>
<td>78.3%</td>
<td>75.6%</td>
<td>94.6%</td>
<td>69.0%</td>
<td>76.9%</td>
<td>76.9%</td>
</tr>
<tr>
<td>Дијагностичка тачност</td>
<td>70.2%</td>
<td>65.7%</td>
<td>72.1%</td>
<td>70.2%</td>
<td>65.7%</td>
<td>67.7%</td>
<td>65.7%</td>
<td>93.0%</td>
<td>85.1%</td>
<td>82.6%</td>
<td>82.6%</td>
</tr>
</tbody>
</table>
Сумарно, на основу резултата тестова слагања и параметара дијагностичке ефикасности издвојили смо појединачне тестове (BT, DIF, IgG), комбинације тестова „позитивна два или више теста“ (DIF+BT, DIF+IgG, BT+IgG) и „позитиван било који тест“ (BT/IgA, DIF/IgA) који показују најбоље вредности дијагностичких параметара. (Табела 13.) Упоредном анализом појединачних тестова очигледно је да и поред ниске сензитивности, најбољу дијагностичку ефикасност, по већини параметара (ORA, kappa, специфичност, PPV, проширен Јуденов индекс уз високу NPV и дијагностичку тачност) показује BT. Међутим, ако кажемо да су основни показатељи који указују на дијагностичку ефикасност и перформансне неког теста сензитивност и специфичност, уз напомену да у клиничкој пракси не постоји дијагностички тест који је 100% сензитиван и 100% специфичан, долази до промене. Наиме, у овом другом случају можда треба дати предност тестовима који показују најбољи баланс сензитивности и специфичности што би у нашем случају свакако био DIF (сен:77,8%; спец:72,4%). Уколико је то могуће, бољи резултати се постижу различитим тестовима, чиме се дијагностичка ефикасност тестова може подићи на виши ниво. Комбинације DIF+BT и BT+IgG не поправљају дијагностичку ефикасност када се упореде са брзим тестом који је појединачно имао најбоље параметре. Када се комбинација DIF+IgG упореди са DIF и IgG појединачним тестовима, дијагностичка ефикасност је већа (повећава се ORA, kappa, специфичност и PPV, али сензитивност пада), док у односу на BT (сен: 33,3%; спец:100,0%) показује боље избалансиран однос сензитивности (55,6%) и специфичности (92,7%). Комбинација BT/IgA поред високих вредности ORA и kappa показује и добро избалансиран однос сензитивности и специфичности уз високу специфичност од 94,3%. Са друге стране комбинација DIF/IgA показује високу сензитивност од чак 100% уз добро избалансиран однос сензитивности и специфичности. (Табела 13.)

Закључно, тест који је високо сензитиван, уз не тако добру специфичност, је погодан за скрининг тест. На основу тога, наша препорука је да се у случајевима када је немогуће радити PCR методу користи комбинација DIF/IgA управо због супериорне сензитивности од 100%. Тако да ћемо овом комбинацијом тестова регистровати све позитивне налазе, односно нећемо имати лажно негативних резултата што је и основна улога скрининг теста. Међутим нижа специфичност (68,8%) ове комбинације тестова значи да ће ова комбинација тестова бити лажно позитивна код 31,2% особа које немају
хламидијалну инфекцију. У ситуацијама које захтевају високу специфичност препоручена комбинација је BT/IgA, која као високо специфичан тест има мало лажно позитивних резултата док комбинације DIF+BT и BT+IgG иако показују специфичност од 100%, имају ниску сензитивност (33,3%), због чега смо и дали предност комбинацији BT/IgA.

Табела 13. Упоредна анализа резултата тестова слагања и параметара дијагностичке ефикасности појединачних тестова и комбинација тестова „позитивна два или више теста“, позитиван било који тест

<table>
<thead>
<tr>
<th>Статистика</th>
<th>BT</th>
<th>DIF</th>
<th>IgG</th>
<th>DIF + BT</th>
<th>DIF + IgG</th>
<th>BT + IgG</th>
<th>BT / IgA</th>
<th>DIF / IgA</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ²</td>
<td>4,19</td>
<td>303</td>
<td>67</td>
<td>4,19</td>
<td>11,6</td>
<td>4,19</td>
<td>7,44</td>
<td>419</td>
</tr>
<tr>
<td>ORA</td>
<td>0,97</td>
<td>0,73</td>
<td>0,85</td>
<td>0,97</td>
<td>0,91</td>
<td>0,97</td>
<td>0,93</td>
<td>0,70</td>
</tr>
<tr>
<td>Капа</td>
<td>0,49</td>
<td>0,14</td>
<td>0,23</td>
<td>0,49</td>
<td>0,32</td>
<td>0,49</td>
<td>0,43</td>
<td>0,16</td>
</tr>
<tr>
<td>Сензитивност</td>
<td>33,3%</td>
<td>77,8%</td>
<td>66,7%</td>
<td>33,3%</td>
<td>55,6%</td>
<td>33,3%</td>
<td>66,7%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Специфичност</td>
<td>100,0%</td>
<td>72,4%</td>
<td>85,9%</td>
<td>100,0%</td>
<td>92,7%</td>
<td>100,0%</td>
<td>94,3%</td>
<td>68,8%</td>
</tr>
<tr>
<td>Позитиван однос вероватноће</td>
<td>/</td>
<td>2,8</td>
<td>4,7</td>
<td>/</td>
<td>7,6</td>
<td>/</td>
<td>11,6</td>
<td>3,2</td>
</tr>
<tr>
<td>Негативан однос вероватноће</td>
<td>0,7%</td>
<td>0,3</td>
<td>0,4</td>
<td>0,7</td>
<td>0,5</td>
<td>0,7</td>
<td>0,4</td>
<td>/</td>
</tr>
<tr>
<td>Преваленца болести</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
<td>4,5%</td>
</tr>
<tr>
<td>Позитивна предиктивна вредност</td>
<td>100,0%</td>
<td>11,7%</td>
<td>18,2%</td>
<td>100,0%</td>
<td>26,3%</td>
<td>100,0%</td>
<td>35,3%</td>
<td>13,0%</td>
</tr>
<tr>
<td>Негативна предиктивна вредност</td>
<td>97,0%</td>
<td>98,6%</td>
<td>98,2%</td>
<td>97,0%</td>
<td>97,8%</td>
<td>97,0%</td>
<td>98,4%</td>
<td>100,0%</td>
</tr>
<tr>
<td>Јуденов индекс</td>
<td>33,3%</td>
<td>50,2%</td>
<td>52,6%</td>
<td>33,3%</td>
<td>48,3%</td>
<td>33,3%</td>
<td>60,9%</td>
<td>68,8%</td>
</tr>
<tr>
<td>Проширени Јуденов индекс</td>
<td>130,3%</td>
<td>60,4%</td>
<td>69,0%</td>
<td>130,3%</td>
<td>72,4%</td>
<td>130,3%</td>
<td>94,6%</td>
<td>81,8%</td>
</tr>
<tr>
<td>Дијагностичка тачност</td>
<td>97,0%</td>
<td>72,6%</td>
<td>85,1%</td>
<td>97,0%</td>
<td>91,0%</td>
<td>97,0%</td>
<td>93,0%</td>
<td>70,2%</td>
</tr>
</tbody>
</table>

4.3. ROC анализа серумског нивоа IgA и IgG антитела на хламидијални МОМР антиген

Хламидијална инфекција је поред осталих метода детектована и помоћу серумског нивоа IgA антитела на хламидијални МОМР антиген на основу cut–off вредности (S/Co ≥ 1,1) препоручене од стране произвођача теста (Euroimun, Lubeck, Germany). У циљу боље анализе и побољшања дијагностичке ефикасности теста урађена је ROC (ог енгл. Receiver Operating Characteristic Curve) анализа серумског нивоа IgA антитела на хламидијални МОМР антиген, а на основу карактеристика ROC криве (p<0,01; AUC=0,952) дефинисана је нова cut – off вредност (S/Co ≥ 0,87). (Графикон 10.)
Резултати анализе добијени на основу нових вредности су показали да се дијагностичка ефикасност овог теста може поправити у односу на резултате добијене на основу *cut–off* вредности препоручене од стране произвођача теста. (Табела 14. и 15.)

Грађикон 10. ROC крива серумског нивоа IgA антитела на хламидијални MOMP антиген

Иако је дијагностичка тачност теста коју смо добили анализом резултата на предходно описане начине веома слична, применом нове *cut–off* вредности, уз очувану специфичност (90,2%) значајно су поправљене вредности сензитивности (77,8%) и Јуденовог индекса (67,9%) су готово два пута веће у односу на резултате добијене на основу *cut–off* вредности препоручене од стране произвођача теста а значајно је повећана и вредност проширеног Јуденовог индекса (97,1%). (Табела 14. и 15.)
Табела 14. Дијагностичка ефикасност IgA антитела на хламидијални МОМР антиген на основу Cut-off вредности препоручених од стране производача теста

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Негативни</td>
<td>11</td>
<td>152</td>
</tr>
<tr>
<td>Укупно</td>
<td>15</td>
<td>157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>44.4%</td>
</tr>
<tr>
<td>Негативни</td>
<td>6.7%</td>
</tr>
</tbody>
</table>

χ² ORA = 4.22; df = 1; p = 0.040
Карп 0.2867

Статистика Вредности 95% CI
Сензитивност 44.44% 13.70% до 78.80%
Специфичност 93.25% 88.98% до 96.58%
Позитиван однос вероватноће 6.59 2.61 до 16.46
Негативан однос вероватноће 0.6 0.33 до 1.07
Преваленца болести 5.23% 2.42% до 9.7%
Позитивна предиктивна вредност 26.67% 12.58% до 47.88%
Негативна предиктивна вредност 96.82% 94.42% до 98.20%
Јуденов индекс 37.69%
Проширен Јуденов индекс 61.18%
Дијагностичка тачност 90.70% 85.33% до 94.59%

Табела 15. Дијагностичка ефикасност IgA антитела на хламидијални МОМР антиген на основу Cut-off вредности дефинисаних ROC анализом

<table>
<thead>
<tr>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Негативни</td>
<td>16</td>
<td>147</td>
</tr>
<tr>
<td>Укупно</td>
<td>23</td>
<td>149</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>77.8%</td>
</tr>
<tr>
<td>Негативни</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

χ² ORA = 23.0; df = 1; p < 0.001
Карп 0.3917

Статистика Вредности 95% CI
Сензитивност 77.78% 39.99% до 97.19%
Специфичност 90.18% 84.55% до 94.28%
Позитиван однос вероватноће 7.92 4.43 до 14.18
Негативан однос вероватноће 0.25 0.07 до 0.84
Преваленца болести 5.23% 2.42% до 9.7%
Позитивна предиктивна вредност 30.43% 19.65% до 43.91%
Негативна предиктивна вредност 98.66% 95.58% до 99.60%
Јуденов индекс 67.89%
Проширен Јуденов индекс 97.05%
Дијагностичка тачност 89.53% 83.97% до 93.68%
Поред серумског нивоа IgA, хламидијалну инфекцију смо детектовали и на основу серумског нивоа IgG антитела на хламидијални МОМР антиген користећи cut–off вредности (≥ 22 RU/ml) препоручене од стране производача (Euroimun, Lubeck, Germany). И у овом случају дијагностичка ефикасност теста је била на незадовољавајућем нивоу, те смо сходно томе у циљу боље анализе и побољшања дијагностичке ефикасности овог теста урадили ROC анализу серумског нивоа IgG, а на основу карактеристика ROC криве (p<0,01; AUC=0,954) дефинисана је нова cut–off вредност (S/Co = 17,57) (Графикон 11). Као и у случају серумског нивоа IgA ROC анализа је потврдила да се дијагностичка ефикасност овог теста може поправити применом ново дефинисане cut–off вредности (Табела 16 и17).

Графикон 11. ROC крива серумског нивоа IgG антитела на хламидијални МОМР антиген

Евалуацијом дијагностичке ефикасности IgG антитела на хламидијални МОМР антиген на основу нове cut-off вредности (IgG: Ru/ml ≥ 17,57) показали смо да је уз супериорну сензитивност (100,0%) и очувану специфичност (83,4%) дијагностичка ефикасност теста значајно повећана и у случају Јуденовог индекса (83,4%) и проширеног Јуденовог индекса који износи чак 108,4%. (Табела 17)
| Табела 16. Дијагностичка ефикасност IgG антитела на хламидијални MOMP антиген на основу Cut-off вредности препоручених од стране произвођача теста |
|---|---|---|
| RT-PCR | Позитивни | Негативни |
| Позитивни | 6 | 3 |
| Негативни | 26 | 137 |
| Укупно | 32 | 140 |
| Позитивни | 66.7% | 33.3% |
| Негативни | 16.0% | 84.1% |
| χ^2 ORA | $\chi^2 = 62; \ df = 1; p < 0.001$ |
| Карра | 0.2298 |
| Статистика | Вредности | 95% CI |
| Сензитивност | 66.67% | 29.99% до 97.19% |
| Специфичност | 84.05% | 77.51% до 89.31% |
| Позитиван однос вероватности | 4.18 | 2.34 до 7.47 |
| Негативан однос вероватности | 0.4 | 0.16 до 1.00 |
| Преваленца болести | 5.23% | 2.42% до 9.70% |
| Позитивна предиктивна вредност | 18.75% | 11.43% до 29.21% |
| Негативна предиктивна вредност | 97.86% | 94.76% до 99.14% |
| Јуденов индекс | 50.72% |
| Проширен Јуденов индекс | 67.33% |
| Дијагностичка тачност | 83.14% | 76.69% до 88.41% |

| Табела 17. Дијагностичка ефикасност IgG антитела на хламидијални MOMP антиген на основу Cut-off вредности дефинисаних ROC анализом |
|---|---|---|
| RT-PCR | Позитивни | Негативни |
| Позитивни | 9 | 0 |
| Негативни | 27 | 136 |
| Укупно | 36 | 136 |
| Позитивни | 100% | 0% |
| Негативни | 1.66% | 83.4% |
| χ^2 ORA | $\chi^2 = 85.81; \ df = 1; p < 0.001$ |
| Карра | 0.3452 |
| Статистика | Вредности | 95% CI |
| Сензитивност | 100.00% | 66.37% до 100.00% |
| Специфичност | 83.44% | 76.82% до 88.79% |
| Позитиван однос вероватности | 6.04 | 4.28 до 8.52 |
| Негативан однос вероватности | 0 |
| Преваленца болести | 5.23% | 2.42% до 9.70% |
| Позитивна предиктивна вредност | 25.00% | 19.11% до 31.99% |
| Негативна предиктивна вредност | 100.00% |
| Јуденов индекс | 83.44% |
| Проширен Јуденов индекс | 108.44% |
| Дијагностичка тачност | 84.30% | 77.99% до 89.39% |

На истоветан начин смо анализирали и комбинације ова два теста. Применом нових cut-off вредности дефинисаних на основу ROC анализе, дијагностичка ефикасност комбинације IgA+IgG теста (позитивна оба теста) је значајно повећана. Вредности
сензитивности (77,8%), Јуденовог индекса (72,9%) и проширеног Јуденовог индекса (118,3%) су у односу на вредности добијене применом cut–off вредности препоручених од стране произвођача увећане више од два пута. (Табела 18. и 19.)

Табела 18. Дијагностичка ефикасност IgA+IgG (позитивна оба теста) антитела на хламидијални МОМР антиген на основу Cut-off вредности препоручених од стране произвођача теста

<table>
<thead>
<tr>
<th>IgA+IgG cut-off S/Co ≥ 1.1; ≥ 22 RU/ml</th>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>8</td>
<td>155</td>
<td>163</td>
</tr>
<tr>
<td>Укупно</td>
<td>11</td>
<td>161</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Позитивни Негативни</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>33.3% 66.7% 8.1%</td>
</tr>
<tr>
<td>Негативни</td>
<td>4.9% 95.1%</td>
</tr>
</tbody>
</table>

χ² ORA
χ² = 0.469; df = 1; p = 0.493
Kappa
0.2572

Табела 19. Дијагностичка ефикасност IgA+IgG (позитивна оба теста) антитела на хламидијални МОМР антиген на основу Cut-off вредности дефинисаних ROC анализом

<table>
<thead>
<tr>
<th>IgA+IgG cut-off S/Co ≥ 0.87; ≥ 17.57 RU/ml</th>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>7</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Негативни</td>
<td>8</td>
<td>155</td>
<td>163</td>
</tr>
<tr>
<td>Укупно</td>
<td>15</td>
<td>157</td>
<td>172</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Позитивни Негативни</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>77.8% 22.2% 5.8%</td>
</tr>
<tr>
<td>Негативни</td>
<td>4.9% 95.1%</td>
</tr>
</tbody>
</table>

χ² ORA
χ² = 4.22; df = 1; p = 0.04
Kappa
0.5542

Слично, дијагностичка ефикасност комбинације IgA/IgG (позитиван било који тест) је применом нових cut-off вредности сигификантно поправљена, те уз супериорну

80
сензитивност од 100,0%, примена нових cut-off вредности значајно повећава и вредности Јуденовог индекса (78,5%) и проширеног Јуденовог индекса (98,9%). (Табела 20. и 21.) Применом нових cut-off вредности, у свим случајевима, су очуване високе вредности специфичности и негативне предиктивне вредности.

Табела 20. Дијагностичка ефикасност IgA/IgG (позитиван било који тест) антитела на хламидијални MOMP антиген на основу Cut-off вредности препоручених од стране производача теста

<table>
<thead>
<tr>
<th></th>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Негативни</td>
<td>33</td>
<td>130</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Укупно</td>
<td>40</td>
<td>132</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Сензитивност</th>
<th>Специфичност</th>
<th>Позитиван однос вероватноће</th>
<th>Негативан однос вероватноће</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>77.8%</td>
<td>22.2%</td>
<td>77.78%</td>
<td>79.75%</td>
<td>3.84</td>
<td>0.28</td>
</tr>
<tr>
<td>Негативни</td>
<td>20.2%</td>
<td>79.8%</td>
<td>77.78%</td>
<td>79.75%</td>
<td>2.42</td>
<td>0.08</td>
</tr>
</tbody>
</table>

χ² ORA = 113; df = 1; p < 0.001

Табела 21. Дијагностичка ефикасност IgA/IgG (позитиван било који тест) антитела на хламидијални MOMP антиген на основу Cut-off вредности дефинисаних ROC анализом

<table>
<thead>
<tr>
<th></th>
<th>RT-PCR</th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Негативни</td>
<td>35</td>
<td>128</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Укупно</td>
<td>44</td>
<td>128</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Позитивни</th>
<th>Негативни</th>
<th>Сензитивност</th>
<th>Специфичност</th>
<th>Позитиван однос вероватноће</th>
<th>Негативан однос вероватноће</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>100.0%</td>
<td>0.0%</td>
<td>100.00%</td>
<td>78.53%</td>
<td>4.66</td>
<td>0.0</td>
</tr>
<tr>
<td>Негативни</td>
<td>21.5%</td>
<td>78.5%</td>
<td>66.37% to 100.00%</td>
<td>7.142% to 84.56%</td>
<td>3.47</td>
<td>6.25</td>
</tr>
</tbody>
</table>

χ² ORA = 144; df = 1; p < 0.001

Дијагностичка ефикасност

<table>
<thead>
<tr>
<th></th>
<th>Сензитивност</th>
<th>Специфичност</th>
<th>Позитиван однос вероватноће</th>
<th>Негативан однос вероватноће</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивни</td>
<td>5.23%</td>
<td>2.42%</td>
<td>20.45%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Негативни</td>
<td>21.5%</td>
<td>78.5%</td>
<td>16.99%</td>
<td>99.98%</td>
</tr>
</tbody>
</table>

Преваленца болести

<table>
<thead>
<tr>
<th></th>
<th>5.23%</th>
<th>2.42%</th>
<th>20.45%</th>
<th>100.00%</th>
</tr>
</thead>
</table>

Точност

<table>
<thead>
<tr>
<th></th>
<th>Сензитивност</th>
<th>Специфичност</th>
<th>Позитивна предиктивна вредност</th>
<th>Негативна предиктивна вредност</th>
</tr>
</thead>
<tbody>
<tr>
<td>Позитивна</td>
<td>79.65%</td>
<td>72.85%</td>
<td>79.65%</td>
<td>72.85%</td>
</tr>
<tr>
<td>Негативна</td>
<td>79.65%</td>
<td>72.85%</td>
<td>79.65%</td>
<td>72.85%</td>
</tr>
</tbody>
</table>

81
4.4. Економска анализа

Резултати економске анализе приказани су према трошковима за дијагностику и лечење појединачног болесника и трошкове за проценењу популацију свих лечених пацијената у Србији

а) Трошкови по пацијенту

Економска анализа указује да су, за дати сценарио, најмањи укупни трошкови по пацијенту код коришћења брзог теста, 1,146.33 динара потом код серолошких метода, 1,382.00 динара и 1,422.29 динара док су примена директне имунофлуоресценције и посебно PCR тестова скупље стратегије, са укупним трошовима од 1,434.96 динара односно 3,593.60 динара. (Табела 22.) Примена комбинације тестова није исплатива економска стратегија јер су укупни трошкови по пацијенту већи од трошкова примене појединачних тестова, а у случају комбинације директног и серолошких тестова приближавају се најмање исплативој стратегији, примени PCR методе. Дакле, доминантна економска стратегија је примена брзог теста, а прве алтернативе су серолошке методе.
<table>
<thead>
<tr>
<th>Табела 22. Еконошка анализа</th>
</tr>
</thead>
<tbody>
<tr>
<td>УКУПАН БРОЈ ИСПИТАНИКА</td>
</tr>
<tr>
<td>Брзи тест</td>
</tr>
<tr>
<td>Дифференцијална јавка (FP)</td>
</tr>
<tr>
<td>Суме брачних прегледа (FP)</td>
</tr>
<tr>
<td>Укупно поцутирани по пацијенту (FP)</td>
</tr>
<tr>
<td>Суме брачних прегледа (TP)</td>
</tr>
<tr>
<td>Укупно поцутирани по пацијенту (TP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Иницијални циклус</th>
<th>Лабораторијски тест</th>
<th>Укупно по пацијенту у циклусу</th>
<th>Укупно по тесту (n=201)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сума FP и TP</td>
<td>Сума FN</td>
<td>Укупно по пацијенту (n=201)</td>
<td>Укупно по тесту (n=201)</td>
</tr>
<tr>
<td>Терапација FP и TP</td>
<td>Ретестирање после 3 месеца</td>
<td>Контролни преглед лекар специјалиста</td>
<td>Укупно по тесту (FP+TP)</td>
</tr>
<tr>
<td>Укупно по циклусу</td>
<td>Укупно по тесту (FN)</td>
<td>Укупно по тесту (n=201)</td>
<td>Укупно по тесту (n=201)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Индиректни трошкови</th>
<th>Директни трошкови</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сума FP</td>
<td>Трошкови накнадног циклуса за FP</td>
</tr>
<tr>
<td>Сума FN</td>
<td>Трошкови поновљеног циклуса за FN</td>
</tr>
<tr>
<td>Укупно по пацијенту</td>
<td>Укупно по тесту (n=201)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Удео по пацијенту</th>
<th>Удео по тесту</th>
</tr>
</thead>
<tbody>
<tr>
<td>Укупно по циклусу</td>
<td>Укупно по тесту (n=201)</td>
</tr>
</tbody>
</table>
Удео индиректних здравствених трошкова, по пацијенту, у укупним трошковима је такође најмањи код примене брзог и серолошких тестова, и налази се у ранији од 2.8-11.2%. Једино примена комбинације два серолошка теста има сличан удео индиректних здравствених трошкова (13.8%), док код директне имунофлуоресценције и других комбинације тај удео износи око петине. Изузетак представља примена тестова заснованих на PCR методи где нема индиректних здравствених трошкова, имајући у виду да је тај тест разматран као „златни стандард“ чији су сви резултати сматрани као стварно позитивни и стварно негативни.

Резултати су указали да је цена теста доминантан трошак у дијагностици хламидијалне инфекције генитоуринарног тракта код нас. Мали трошкови лекарских прегледа и лечења болесника са лажно позитивним и лажно негативним налазима су основни разлог таквог резултата. Иако су дијагностичке перформансе свих тестова у односу на PCR методу знатно слабије, њена висока почетна цена, у условима трошкова националног здравственог система, не може да се компензује бољим резултатима у дијагностици у укупном економском профилу датог сценарија. Комбиновање тестова није повољна економска стратегија јер се тиме повећавају иницијални трошкови за саме тестове, а како су они примарна детерминатна економског профила, укупни трошкови се повећавају у односу на стратегије монотестирања. Штавише, крајње дијагностичке перформансе комбиновања тестова нису значајно боље у односу на примену појединачних тестова, тако да и та чињеница делује као негативни економски фактор у стратегији иницијалног коришћења више дијагностичких метода.

6) Трошкови циљне популације

виду поменути процењен укупан број становника, утврђена на 9,639 (3,860-13,499) оболелих од хламидијалне генитоуринарне инфекције.

Резултати интерно спроведене анкете у микробиолошким лабораторијама установа јавног здравља и приватне здравствене праксе су указали да је најчешћи коришћени тест у дијагностичком процесу брзи тест, потом директни имунофлуоресцентни тест, а да је најређе употребљен PCR метода. При томе, скоро 80% лабораторија у установама јавног здравља користи најмање два различитих теста а око 25% лабораторија приватних пракса је способно за извођење и спроводи најмање три различитих теста. Ови резултати указују да је пракса комбинованог тестирања широко заступљена. С тим у вези, процена трошкова циљне популације је сачињена за три претпостављена сценарија: а) код свих болесника се примењује само један тест; б) дијагностички тестови се примењују у мултицентричном односу актуелне праксе лабораторија; в) дијагностички тестови се примењују у претпостављеном сценарију при примања само једног теста код једног болесника, при релативној расподели различитих тестова која следи однос актуелне праксе. Имајући у виду инциденталне вредности трошкова дијагностике, прегледа и лечања, процена ових сценарија је укључила само лабораторије из система јавног здравља. При томе је претпостављено да ће од укупне циљне популације 92.5% пацијената бити доступно за спровођење инциденталне дијагностике и даљег лечања, укупно 8916 особа (3570 до 12487). Резултати економске анализе за ова три сценарија су дата у Табели 23.

Укупни просечни трошкови циљне популације у првом сценарију су процењени од 10,220,737.64 (директни тест) до 32,040,807.12 динара (PCR метода) (95% границе поверене од 4,092,960.61 до 44,871,755.92 динара). Актуелни укупни трошкови у другом сценарију, који следи актуелну праксу расподеле различитих дијагностичких тестова су процењени на износ од 24,560,347.91 динара (9,835,350.44 до 34,395,698.35). Уколико би се код једног пацијента користио само један тест, а расподела тестова следила однос актуелне праксе (трећи сценарио), укупни трошкови би били скоро за половину нижи, 13,854,555.23 динара (5,548,146.40 до 19,402,701.63). Тако, иницијално комбиновање различитих тестова код истог пацијента је, с аспекта укупних трошкова за укупну циљну популацију, нерационална економска стратегија јер се процењује да се у систему националног јавног здравља за такву праксу троши око 10 милиона динара а да се,
имајући у виду претходну економску анализу за појединачног болесника, таквом праксом увећавају трошкови без битно унапређених дијагностичких перформанси.

Табела 23. Анализа здравствених трошкова за иницијалну микробиолошку дијагностику и фармакотерапију циљне популације оболелих од генитоуринарне хламидијалне инфекције у Србији

<table>
<thead>
<tr>
<th>Варијабле</th>
<th>DIF</th>
<th>BT</th>
<th>IgA</th>
<th>IgG</th>
<th>PCR</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Актуелни удео</td>
<td>40.9%</td>
<td>59.1%</td>
<td>31.8%</td>
<td>36.4%</td>
<td>9.1%</td>
<td>177.3%</td>
</tr>
<tr>
<td>Монотестирање</td>
<td>23.1%</td>
<td>33.3%</td>
<td>17.9%</td>
<td>20.5%</td>
<td>5.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Разлика удела</td>
<td>17.8%</td>
<td>25.8%</td>
<td>13.9%</td>
<td>15.9%</td>
<td>4.0%</td>
<td>77.3%</td>
</tr>
<tr>
<td>Трошак, особа</td>
<td>1,434.96</td>
<td>1,146.33</td>
<td>1,382.00</td>
<td>1,422.29</td>
<td>3,593.60</td>
<td>н.п.</td>
</tr>
</tbody>
</table>

Трошкови циљне популације

<table>
<thead>
<tr>
<th>Сценарио једног теста за све</th>
<th>DIF</th>
<th>BT</th>
<th>IgA</th>
<th>IgG</th>
<th>PCR</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Актуелне праксе</td>
<td>12,794,230.94</td>
<td>10,220,737.64</td>
<td>12,322,008.55</td>
<td>12,681,217.25</td>
<td>32,040,807.12</td>
<td>н.п.</td>
</tr>
<tr>
<td>Монотестирање</td>
<td>5,123,532.67</td>
<td>4,092,960.61</td>
<td>4,934,428.16</td>
<td>5,078,275.61</td>
<td>12,830,948.80</td>
<td>н.п.</td>
</tr>
<tr>
<td>Разлика удела</td>
<td>17,917,763.62</td>
<td>14,313,698.25</td>
<td>17,256,436.71</td>
<td>17,759,492.86</td>
<td>44,871,755.92</td>
<td>н.п.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Сценарио актуелне праксе</th>
<th>DIF</th>
<th>BT</th>
<th>IgA</th>
<th>IgG</th>
<th>PCR</th>
<th>Укупно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сценарио актуелне праксе</td>
<td>5,078,275.61</td>
<td>5,078,275.61</td>
<td>5,078,275.61</td>
<td>5,078,275.61</td>
<td>12,830,948.80</td>
<td>н.п.</td>
</tr>
<tr>
<td>Разлика удела</td>
<td>17,759,492.86</td>
<td>17,759,492.86</td>
<td>17,759,492.86</td>
<td>17,759,492.86</td>
<td>44,871,755.92</td>
<td>н.п.</td>
</tr>
</tbody>
</table>

- доступна популација: 8,916 (3,571-12,487) болесника;
- трошкови у динарима, представљени као средња вредност и 95% границе поверења, за појединачни сценарио и појединачни тест;
- н.п. - није примењиво.
5. ДИСКУСИЈА

Инфекција C. trachomatis је најчешћа сексуално преносива бактеријска инфекција у свету (54). Инфекција углавном погађа младе сексуално активне особе, тако да су и највиши стопе случајева забележене код младих жена од 16 до 24 године. Из године у годину, у САД-у се бележи стални пораст хламидијалне инфекције. У 2016 години стопа пријављених хламидијалних инфекција је показала повећање за 4,7% у односу на 2015 годину (55). Овај тренд се наставља, обзиром да је у 2017 години центру за контролу и превенцију болести укинуто 1,708,569 случајева, што даје повећање од 6,9% у поређењу са стопом у 2016 години. Највећа стопа пријављивања је забележена код младих и адолесцената старости од 16 до 24 године. Иако је стопа пријављених случајева хламидијалних инфекције у 2017 години код мушкараца укључујући и геј популацију нижа у односу на жене, она ипак показује повећање (55).

У 2016 години, у Европи од стране 26 земаља пријављено је 403 807 случајева хламидијалне инфекције што би чинило 185 случајева на 100 000 становника, али са јасно израженим варијацијама између земаља и њихових пријављених стопа. Ове варијације у стопама пријављених хламидијалних инфекција између земаља широм Европе се могу објаснити употребом различитих дијагностичких процедура, прикупљањем и надзором података као и различитим извештавањем. Иако је стопа пријављених хламидијалних инфекција у Европи велика, ипак показује стабилност.

Недијагностикована и сходно томе нелечена хламидијална инфекција може довести до озбиљних компликација и последица на репродуктивном тракту код жена (57, 161). Клиничке манифестације гениталне хламидијалне инфекције код жена, пре свега обухватају инфекције доњег гениталног тракта, које се најчешће испољавају појавом цервицитиса. У неким случајевима долази до спонтане резолуције инфекције, док код неких жена инфекција се шири у горњи репродуктивни тракт доводећи до озбиљних оштећења и компликација као што су пелвична инфламаторна болест, тубални фактор инфертилитета и ектопична трудноћа. Fitz-Hugh-Curtis синдром углавном се јавља након или у току салпингитиса, и чешће се повезује са хламидијалном него са гонококном инфекцијом (59). Код мушкараца хламидијална инфекција углавном доводи до уретритиса. Хламидијална
инфекција се повезује и са Рајтеровим синдромом код мушкараца и жена (89). Висока учесталост и асимптоматска природа хламидијалне инфекције, доводи до континуираног преноса, обзиром да особе које имају инфекцију, представљају значајан резервоар за даље преношење. Због тога, многе земље примењују различите програме контроле и превенције хламидијалне инфекције. Програми контроле хламидијалне инфекције су углавном базирани на скринингу асимптоматских инфекција код млађих сексуално активних жена, као и њихових партнера. Од ових програма се очекује да ће смањити број штетних последица хламидијалне инфекције на репродуктивно здравље жена, као и даље ширење инфекције.

Висока учесталост јављања инфекције без симптома и могућност неповољног исхода на репродуктивно здравље подстакла је развој осетљивијих дијагностичких тестова. Рана дијагностика акутне хламидијалне инфекције је изузетно важна, али и врло изазовна због асимптоматске природе и карактеристичног развојног циклуса C. trachomatis. У последњих тридесет година је остварен значајан напредак на пољу дијагностиковања хламидијалне инфекције. За детекцију C. trachomatis постоје вишеструке опције лабораторијског тестирања, мада неке не могу бити препоручене за рутинску употребу. За успешну дијагнозу хламидијалних инфекција неопходно је направити добар одабир теста који обезбеђује високу сензитивност и специфичност али и брзину извођења теста, што су по препорукама европског и америчког центра за контролу болести (ECDC i CDC) тестови амплификације нуклеинских киселина (108, 109). Међутим, висока цена економских трошкова ових тестова, уз техничку комплексност везану за простор, кадар и опрему, условили су да је за већину дијагностичких лабораторија у земљама са нижим приходима овај стандард недостижан. Отуда не чуди податак да се у Србији дијагностика акутне хламидијалне инфекције гениталног тракта, у преко 90% лабораторија, заснива на директној имунофлуоресценцији и серолошким тестовима, који као такви нису препоручени ни од америчког ни од европског центра за контролу болести.

Сходно томе, основни циљ наше студије био је да се утврди дијагностичка ефикасност четири теста за детекцију акутне хламидијалне инфекције и директних и индиректних медицинских трошкова тестирања. У складу са наведеним циљем испитали
смо слагање резултата RT-PCR теста за детекцију C. trachomatis (златни стандард) са резултатима добијеним употребом директне имунофлуоресценције (DIF) и брзог имунохроматског теста (EIA) за квалитативно откривање хламидијалних антигена и имуноензимских тестова за детекцију серумског нивоа IgA и IgG антитела специфичних за хламидијални MOMP антиген (ELISA).

Наша студија пружа клиничке и економске препоруке у вези са селекцијом дијагностичких тестова у откривању акутне хламидијалне инфекције у случајевима када су технике амплификације нуклеинских киселина недоступне из било ког разлога. На основу пажљиве анализе резултата појединачних тестова, наша студија је показала да најбољу дијагностичку ефикасност показује брзи тест. У одабиру тестова за детекцију хламидијалне инфекције, поред дијагностичке ефикасности, веома је битна и брзина извођења теста и добијања резултата ради благовременог иницирања лечења. Тестови латералне хроматографије (брзи имунохроматографски тестови – БТ) за квалитативно откривање хламидијалних антигена представљају нову генерацију имуноензимских тестова који свакако испуњавају овај услов, обзиром да су резултати теста доступни за десет минута, тако да пацијенти са позитивним резултатом теста могу одмах кренути са антибиотичком терапијом. Сматра се да ови тестови могу да смање ниво трансмисије и инциденцу хламидијалних инфекција и последичне секвеле по репродуктивно здравље жена. Управо тако што смањују време између постављања дијагнозе и почетка третмана (62). Дијагностика заснована на другим тестовима захтева другу посету пацијената, што потенцијално доводи до одложеног лечења или изостања лечења уколико се пацијенти не појаве, што може довести до пораста инциденце инфекције. Међутим, и поред високе специфичности и кратког времена извођења теста, због разочаравајуће ниске сензитивности наша студија не препоручује ову методу за дијагнозу асимптотских и симптоматских хламидијалних инфекција. Наши налази су у складу са препорукама других студија где је примећена ниска сензитивност (20-60%) брзих тестова (132 - 136, 162). Међутим, једна студија указује на још нижу сензитивност (11,6%-27,3%) брзих тестова која се у неким случајевима може објаснити тестирањем асимптотских пацијената код којих је инфекција на самом почетку (163). Међутим, иако се тестирањем ендоцервикалних узорака код симптоматских пацијената сензитивност брзих тестова може повећати (22,7%-37,7%), она је и даље на незадовољавајућем нивоу (164). Међутим
и поред ниске сензитивности ову дијагностичку методу поменути аутор препоручује за рутинску употребу у скрининг програму хламидијалне инфекције обзиром на њихову исплативост и високу специфичност (164). Даље, EIA тестови показују ниску сензитивност и у односу на ћелијску кутуру као референтни метод. Због знатног броја лажно позитивних резултата не препоручују се њихова употреба у условима ниске преваленце (165). Са друге стране, неки аутори препоручују баш ову дијагностичку методу у условима ниске и умерене преваленце у примарним установама, а ниску осетљивост објашњавају мањим оптерећењем инфекцијом (166). Инфекција C. trachomatis током трудноће може да доведе до коњуктивитиса и пнеумоније новорођенчета, као и до постпарталног ендометритиса мајке (167). Обзиром на овакве последице хламидијалне инфекције током трудноће, у популацији трудница са ниском преваленцом, EIA тестови нису поуздани и не могу се препоручити као дијагностичке методе (137). Тестови амплификације нуклеинских киселина су значајно допринели напретку у дијагнози хламидијалне инфекције захваљујући својим перформансама, али високи трошкови ових тестова у већини земаља са ниским стандардом чине их недоступним. Сходно томе, једна студија истиче да би се ови проблеми превазишили развојем осетљивих врхних тестова, уз повољније тестове, брзо и лако извођење теста (168). Карактеристике нових „идеалних“ врхних тестова биле би једнозначно коришћење, неинвазивни узорци, висока сензитивност уз очувану специфичност. Овако дизајниран тест нуди дијагнозу и лечење при једној посети лекару, уз високу дијагностичку ефикасност, и као такав би имао препоруке за дијагнозу хламидијалне инфекције (169). Ипак, неки аутори се не слажу са овим препорукама и кажу да повећану осетљивост (преко 80%) прати висок процент недефинисаних и лажно позитивних резултата који смањују специфичност (170). Наравно, ово правило се не односи на друге методе, посебно када су у питању NAAT тестови. Тако Ампликор PCR тест идентификује око 30% више инфекција од уобичајених EIA тестова у популацији са ниском преваленцом. Стога, иако је PCR техника скупља, смањен морбидитет који је резултат откривања и лечења иначе недијагностикованих случајева од стране EIA тестова такође треба размотрити у било којој економској анализи трошкова скрининга метода (171). Насупрот томе, једна студија управо због ниских трошкова ове методе препоручују EIA тестове као примарну методу у програму скрининга хламидијалне инфекције код жена, али уз напомену да је због ниске осетљивости ових тестова неопходно потврђивање негативних резултата тестом амплификације нуклеинских
киселина (172). Обзиром да је улога скрининга да открије што је више могуће случајева инфекције и на тај начин спречи трансмисију, компликације и озбиљне последице на репродуктивном тракту жена неки аутори се не слаже са овим препорукама. Обзиром да се у условима реалне клиничке праксе EIA тестови доста користе користе у детекцији асимптоматских хламидијалних инфекција, вероватно ће због ниске осетљивости пропустити велики процент инфекције у програму скрининга (173). Супротно нашим резултатима, неки аутори су показали да тренутно доступни брзи тестови показују високу осетљивост (60-99%) и пружају могућност тестирања популација којима је тешко приступити, што ће омогућити третман више случајева, али ипак не препоручују лабораторијску успорбу ових тестова (174, 175).

Други приступ директног потврђивања хламидијалне инфекције тј. детекције хламидијалних антигена у клиничким узорцима, укључује тестирање узорака тестом директне имунофлуоресценције (DIF), који користи врсно специфична моноклонска антитела за детекцију главног протеина спољашње мембране (MOMP) хламидија. Анализом наших резултата показали смо да DIF има добро уравнотежен однос сензитивности и специфичности (сен: 77,8% ; спец: 72,4%), али изузетно ниску позитивну предиктивну вредност, што је главни разлог зашто се на основу резултата наше студије овај тест не може препоручити за дијагнозу акутне хламидијалне инфекције. Ниска позитивна предиктивна вредност ове методе се може повећати у субпопулацијама са високом преваленцом, а смањење сензитивности може се објаснити мањим оптрећењем инфекцијом у групама са ниском преваленцом (168). У сагласности са нашим истраживањем су и друге студије, које су приказали сличне или исте вредности сензитивности и специфичности ове дијагностичке методе (176, 177, 178, 125). У односу на ћелијску културу као рефенити метод DIF метода показује већу сензитивност (80-90%), уз очувану високу специфичност, али и даље није погодна и не препоручује се за велики број узорака, јер захтева дуготрајан и интензиван рад (179). Компаративном анализом резултата добијених употребом EIA и DIF методе је показано да су EIA тестови у предности, обзиром да DIF показује ниже вредности сензитивности и осталих дијагностичких параметра у поређењу са EIA тестовима (168). За разлику од наших резултата, неки аутори наводе и веома ниске вредности сензитивности (36%) ове дијагностичке методе, али и значајно већу PPV (81,5%), што се вероватно може објаснити.
тестирањем различитих група (180). Међутим, супротно нашим налазима, неке од ранијих студија препоручују DIF методу као практичну и јефтину, релевантну у рутинској лабораторијској пракси и погодну за рано откривање инфекције због своје високе осетљивости (177, 178, 181). Са овим резултатима се слажу и аутори студије у којој је приказана сензитивност DIF-а од чак 100% у односу на PCR као златни стандарт, а овако високе вредности сензитивности аутори објашњавају квалитетом ендоцервикалних узорака за анализу (178,182). Сходно томе, лажно негативни и лажно позитивни резултати се могу спречити процентом квалитета ендоцервикалних узорака присуством и бројем епителних ћелија, оцењивањем теста од стране искусеног особља и коришћењем узорака за контролу квалитета. Када се користи проширен златни стандарт, процент сензитивности DIF-а поклапа се са вредностима из наше студије, уз нешто већу специфичност, али супротно нашим налазима исти аутори препоручују коришћење ових тестова у популацији са ниском преваленцом (125). Међутим, други сумњају у ову изјаву под претпоставком да се DIF не препоручује у условима ниске преваленце и треба га користити само у лабораторијама које обрађују мали број узорака (126). Закључно, обзиром да је ова метода субјективна, да захтева особу која је исусна у раду са флуоресцентним микроскопом, те да има незадовољавајућу сензитивност и ниску позитивну предиктивну вредност, сматрамо да се ова метода не може препоручити за детекцију акутне хламидијалне инфекције.

Серологија се не препоручује за дијагностиковање акутних хламидијалних инфекција доњег гениталног тракта, обзиром да се антитела могу детектовати тек неколико недеља од почетка инфекције, титар антитела може бити низак, а многи серолошки тестови нису у могућности да разликују антитела против различитих врста хламидија. Са изузетком, серологија може бити од користи код инфекција новорођенчади, пацијената са тубалним фактором инфертилитета (183, 184), ектопичном трудноћом (185), рекурентним побачајима (186) и пелвичном инфламаторном болешћу (187). Наш резултати пружају прилично задовољавајуће резултате за серумски ниво IgA и IgG антитела. Специфичност, негативна предиктивна вредност, као и Јуденов индекс и дијагностичка тачност су прилично високи, али због незадовољавајуће ниске осетљивости и позитивне предиктивне вредности, ови тестови се такође не могу препоручити као појединачне методе за дијагнозу хламидијалне инфекције. Велика већина претходних
студија указује да, осим код пацијената са хроничном хламидијалном инфекцијом горњег гениталног тракта, серолошки IgA и IgG тестови немају никаквог значаја за утврђивање дијагнозе акутне хламидијске инфекције (62, 108, 109, 188, 176, 147,189). Резултати једне студије сутишу да, иако је корелација серологије са активном инфекцијом доњег гениталног тракта веома ниска, ипак може искључити активну инфекцију са високом поузданошћу (190). Други аутори наглашавају да поред значајне улоге серолошког доказа код тубалног фактора инфертилитета, детектована IgA и IgG антитела могу бити од користи и при дијагнози акутне хламидијалне инфекције (191). Сагласни са овим препорукама су и други аутори који кажу да присуство серумских IgA антитела, која имају полуживот од око 5-7 дана, може бити користан маркер за активну инфекцију C. trachomatis или као маркер хроничне инфекције уз упорну антигенску стимулацију имуног система (192). Други дају предност секреторним sIgA антителима као бољим индикаторима хламидијалне инфекције у односу на циркулишућа антитела (193). Велики број студија је показао снажну корелацију између присуством анти-MOMP (194 - 198) и анти-cHSP60 (199 - 201) антитела и тежине гениталне инфекције C. trachomatis, PID, инфертилитета и тубалне патологије (202, 203). Супротно томе, Логан С. и сарадници скрећу пажњу да серолошки IgA и IgG тестови нису показали велику прецизност код тубалног фактора инфертилитета код субфертилних жена (204). У серодијагностици тубарног фактора инфертилитета неки аутори дају предност анти- MOMP IgA антителима у односу на анти- MOMP IgG антитела (205). Слично, показано је да су анти- MOMP IgA антитела најбољи имунолошки макер за дијагнозу хроничног простатиса (206), а такође су и у позитивној корелацији са хламидијалном инфекцијом код мушкараца са стерилитетом (207). Обећавајући резултати неких новијих студија указују да нови, синтетички, пептидни, врсно специфични серолошки тестови могу открити IgA и IgG антитела која су снажно повезана са активном инфекцијом (208, 209). Штавише, ови и други налази указују на то да у раним фазама могу бити присутна само серумска (IgA) или секреторна (IgG) антитела која указују на тренутну (активну) хламидијалну инфекцију (209, 210). Међутим, у свим овим истраживањима аутори сутишу да је и у таквим случајевима IgA серопозитивности још увек потребна потврда тестом амплификације нуклеинских киселина. Неки аутори наглашавају да позитивни резултати PCR-а код цервикалних узорака представљају јак доказ присуства хламидијалне инфекције у доњем гениталном тракту, док негативни резултати PCR-а код цервикалних узорака не искључују
хламидијалну инфекцију горњег гениталног тракта код жена са стерилитетом. Сходно томе ови аутори предлажу, да се код жена у репродуктивном добу користи серологија за дијагнозу хламидијалне инфекције горњег гениталног тракта (211). Стога, иако нове серолошке методе засноване на употреби пептидних антигенда бацају ново светло на улогу серологије у детекцији C. trachomatis, серолошке методе се не могу препоручити за детекцију акутне хламидијалне инфекције доњих партија гениталног тракта. Ипак, серологија може бити од користи како у епидемиолошким студијама, тако и у студијама које испитују клинички спектар хламидијалних инфекција, укључујући компликације акутне инфекције (реактивни артритис), перзистентну инфекцију, али и манифестације перзистентне инфекције (PID, TFI, ектопична трудноћа).

У земљама где постоје економски, просторни и кадровски услови за извођење тестова амплификације нуклеинских киселина препоруке су јасне, међутим у земљама са ниским стандардом које не испуњавају ове услове, углавном се користе друге дијагностичке методе које нису препоручене за дијагнозу акутне хламидијалне инфекције. Обзиром да ни наша студија не препоручује ниједан од анализираних тестова због ниске дијагностичке ефикасности, покушали смо комбинацијом тестова да поправимо дијагностичку ефикасност у односу на појединачне тестове. Урадили смо две групе комбинације тестова: „позитивна два или више теста“ и „позитиван било који тест“. У комбинацији „позитивна два или више теста“ најбоља дијагностичка ефикасност, уз ниску сензитивност показују комбинације DIF/RT, DIF/RT/IgG i RT/IgG. Када се упореде са брзим тестом који је појединачно имао најбоље параметре, комбинације DIF/RT, DIF/RT/IgG и RT/IgG не поправљају дијагностичку ефикасност брзог теста који се појединачно показао као најбољи. Овом комбинацијом тестова очували смо високе вредности специфичности, али уз велики пад сензитивности. На тај начин, овим строгим критеријумом смо само повећали трошкове дијагностике, али не и дијагностичку ефикасност. Сходно томе, ове комбинације тестова се такође не могу препоручити за дијагнозу акутне хламидијалне инфекције. Са друге стране, комбинацијом тестова „позитиван било који тест“ попушили смо вредности сензитивности уз благ пад специфичности. У овој комбинацији тестова најбољу дијагностичку ефикасност показује комбинација RT/IgA, а затим RT/IgA/IgG и IgA/IgG које показују и највеће вредности дијагностичке тачности у односу на друге комбинације. Иако ове комбинације, у односу
на брзи тест, имају бољи баланс сензитивности и специфичности оне не поправљају дијагностичку ефикасност. Слично, комбинације DIF/IgA и DIF/RT/IgA имају најбољи баланс сензитивности и специфичности, али ни ове комбинације у односу на појединачне тестове не поправљају дијагностичку ефикасност. Финално, анализа резултата комбиноване употребе тестова је показала да се у случајевима када је немогуће радити тестове амплификације нуклеинских киселина може користити комбинација RT/IgA, како због високе ORA и карра вредности, тако и због добро избалансираног односа сензитивности и специфичности, уз високу специфичност од 94,3%. Са друге стране у ситуацијама које захтевају високу сензитивност препоручена је комбинација DIF/IgA која у односу на све остала показује најбољи баланс сензитивности и специфичности уз сензитивност од 100%. Сличне резултате нашим пруџа и студија у којој је показано да комбинација резултата различитих тестова амплификације нуклеинских киселина може, уз очувану специфичност, да поправи сензитивност детекције хламидијалне инфекције уз напомену да употребу појединачних тестова за дијагнозу хламидијалне инфекције треба ограничити посебно код младих жена (212). Насупрот овим, али и нашим резултатима су резултати студије у коjoј је комбинација тестова амплификације нуклеинских киселина по строгом критеријуму (оба позитивна резултата теста) показала ниску ниску сензитивност и специфичност (213). Неки аутори предлажу да се резултати неколико несавршених тестова могу користити у комбинацији да би се дефинисао несавршени златни стандард према коме се може упоредити нови тест (214, 215, 216). Тако јe у једној студији уз помоћ комбинације „позитивна два или више теста“ дефинисан златни стандард који је служио за упоређивање нових дијагностичких тестова (217). Даље претпоставке су да употреба три теста која су условно независна, а заснивају се на различитим клиничким методама, рецимо детекцији антигена, култури ћелија и ДНК амплификацији има мању вероватноћу да направи исту врсту грешке него ако комбинацију чине два теста амплификације (218).

По узору на друге студије које су ROC анализом и дефинисањем нових cut-off вредности успеле да поправе дијагностичку ефикасност тестова, урадили смо ROC анализу серумског нивоа IgA и IgG антитела на хламидијални MOMP антиген. ROC крива је статистичка метода која се често користи у биомедицинским истраживањима за процену ефикасности дијагностичких тестова, односно њихове способности да дискримише оболеле (позитивне) од нормалних (негативних) случајева (219). Поред графичког приказа
ROC анализа даје и табеларни приказ вредности сензитивности и специфичности за одређене cut-off вредности које могу бити од користи за поређење дијагностичког учинка два или више тестова (220). Поред тога, површина испод криве (AUC) служи као добра мера укупне клиничке тачности теста, односно представља способност теста да разликује позитивне од негативних налаза. Приликом одређивања нове cut-off вредности, уобичајено се тежи смањењу броја ложно негативних и ложно позитивних дијагноза. Међутим, уобичајено је да смањење броја ложно негативних дијагноза (помоћу специфичности) резултира повећањем броја ложно негативних (смањење сензитивности) и обрнуто. На основу резултата добијених ROC анализом, можемо рећи да је основни допринос наше студије, пре свега, одређивање оптималне cut-off вредности засноване на идеалном односу сензитивности и специфичности теса чиме смо повећали број тачних дијагноза, док је број погрешних дијагноза сведен на минимум. Наиме, на основу карактеристика ROC криве (IgA: AUC = 0,952; IgG: AUC = 0,930) дефинисане су нове cut-off вредности (IgA: S/Co ≥ 0,87; IgG: Ru/ml ≥ 17,57) за серумски ниво IgA и IgG антитела на хламидијални МОМР антиген. Показали смо да се употребом ових нових cut-off вредности дијагностичка ефикасност серумског нивоа IgA и IgG антитела на хламидијални МОМР може значајно побољшати. Прегледом доступне литератури прикупљене детаљним и систематским претраживањем доступних биомедицинских база података „Medline“, „КОBSON“, „Embase“ и „ScienceDirect“ помоћу следећих кључних речи: „C. trachomatis“, „ROC analysys“, „serum“, „IgA“ i „IgG“ нису пронађене студије сличног дизајна и методолошког приступа.

Хламидијалне генитоуринарне инфекције су значајан медицински и економски проблем савременог света. Непосредне здравствене последице и опасност од хроничних секвел, међу којима је водећи проблем појава инфертилитета, сврставају ове инфекције у јавно-здравствене болести од посебног интереса, посебно за популацију младих. Последично, економске последице су врло озбиљне. Процењено је нпр. да су годишњи трошкови хламидијалне инфекције у Канади, за популацију доби од 10 до 39 година укупно 51.4 милиона долара (221). У држави Илиноис трошкови генитоуринарних хламидијалних инфекција су процењени од око 27,6 до 28,8 милиона долара, за популацију од 100,000 становника у којој је годишња инциденца овог обољења била од око 5,000 до 5,300 случајева (222). Тим поводом, многе студије су истраживале економске
аспекте врло разноврсних дијагностичко-терапијских стратегија које су имале за циљ искорењивање или смањивање последица ових обољења. Модели масовних односно организованих тестирања и контроле болести у популацији (223), примене дијагностике у кућним условима (224), економске перформансе дијагностичких метода примењених у циљу сузбијања секвели инфекције (225) и економске последице хроничних компликација (226) само су неке од бројних тема које су биле предмет истраживања последњих година у овој области.

Савремена дијагностика генитоуринарне хламидијалне инфекције почива на могућностима избора више метода, од којих тестови амплификације нуклеинских киселина имају најбоље дијагностичке перформансе. Међутим, релативно виша цена ових метода, у односу на друге врсте тестирања, може да буде неповољан економски чинилац који условљава ширу примену јевтинијих, мање поузданих дијагностичких тестова што је и примећено као дуготрајна пракса (227). Чињени су напори да се технолошким унапређењима побољша трошковна ефикасност нових дијагностичких метода. У једној студији у Великој Британији нпр. је показано да би трошкови примене молекуларне дијагностике уз болесника (point of care nucleic acid amplification test) могли да буду мањи за 11.7 милиона фунти, у односу на стандардну дијагностику, уз остваривање 46 више година квалитеног живљења и укупно 95 000 избегнутих непотребних кура лечења (228).

Резултати наше економске анализе су показали да примена тестова амплификације нуклеинских киселина није исплатива економска стратегија у односу на друге дијагностичке методе, посебно брзи и серолошке тестове. Додатно, иницијално комбиновања два или више дијагностичка теста, које је знатно раширена пракса у Србији, посебно у лабораторијама у приватном власништву, је такође изразито економски нерационално. Студије које су истраживале релативне односе економских перформанси различитих дијагностичких метода хламидијалне генитоуринарне инфекције, интересантно, нису честе у свету, а код нас, како се може наћи у доступним изворима, нису ни спровођене. У једном детаљном систематском прегледу ранијих студија, за услове економског система у Великој Британији, учињена је таква компаративна економска анализа. Показало се да је примена тестова амплификације нуклеинских киселина не само
ефикаснија него и економски исплативија (130). Наиме, у том моделу популација је била хипотетична кохорта од 1 000 особа, укупни трошкови за тест амплификације нуклеинских киселина (NAATs) су израчунати на 7 070 фунти а правилно лечење би било спроведено код 12.63 инфицираних болесника. С друге стране, укупни трошкови за брзи тест односно тест имуноесеја антигена (Clearview Chlamydia test) су израчунати на 7 180 и 7 170 фунти а правилно лечење би било спроведено код 10.98 одношно 7.14 особа са гениторуринарном хламидијалном инфекцијом. Дакле, тестови амплификације нуклеинских киселина су били доминанта економска стратегија у тој економској анализи, са мањим укупним трошковима и већом клиничком ефикасношћу.

Неповољан економски профил тестова амплификације нуклеинских киселина у нашио студији, за разлику од других сличних истраживања у развијеним земљама, може да се објасни различима у друштвено – економским приликама. Наиме, цена услуга здравствених радника и фармакотерапије генитоуринарне хламидијалне инфекције у националном здравственом систему је вишеструко нижа од цена дијагностичких тестова. Последично, боље дијагностичке перформанске тестова амплификације нуклеинских киселина, које резултују знатно мањим бројем особа које се поновно дијаг nostiкују и непотребно лечење не могу да компензују високу, почетну трошковну разлику. Уопште узев, у нашем здравственом систему у трошковнику третмана уобичајених инфекција уринарног тракта доминирају трошкови конвенционалне дијагностике (уринокултура са антибиограмом), док је ушешће трошкова лекарских прегледа и лечења појединачно далеко испод половине укупне вредности трошкова (229).

Резултати анализе циљне популације у нашој студији, у поређењу са другим, истраживањима у развијеним земаљама као што су претходно поменуте у Канади и Сједињеним Америчким државама, подупире овакав закључак (221, 222) Наиме, укупни трошкови за изравнату популацију оболелих су, за код нас вишеструко пута нижу него они процењени у поменутим студијама. Студија у држави Илиноис је, слично нашем истраживању, такође укључила само директне здравствене трошкове који су, на популационом нивоу, процењени на више милиона долара. С друге стране, за разлику од студије у Канади, чије су методе обухватиле ширу, друштвenu перспективу, наша студија није узела у разматрање неке индиректне здравствене трошкове, попут нпр. трошкова за
лечење нежељених дејстава примењене фармакотерапије ни нездравствене трошкове као што су трошкови губитка радне способности, квалитета живота, путни трошкови и друго. Ипак, разлика у процени трошковима је тако велика да се чини да ни укључивање таквих трошкова у нашу студију не би значајније променило основни наш закључак о релативном односу економских профилова појединачних дијагностичких метода у нашој земљи.

У закључку, наша економска анализа доноси раритетне, ако не и прве резултате у нашем здравственом систему који се односе на компаративни приказ економског профилова различитих дијагностичких метода за хламидијалне генитуринарне инфекције. Они представљају теоријску основу за планирање дијагностичко-терапијских стратегија овог обољења и спровођења даших истраживања која би требала да укључе анализу додатних типова трошкова и клиничких исхода и шире односно другојачије перспективе као што је сценарио лечења у приватној здравственој пракси. Такође, сазнања о трошковном профилу анализираних стратегија и укупној економској оптерећености друштва које доносе инфекције генитуринарног тракта хламидијом могу да буду од користи у планирању мера унапређења управљања системом здравствене заштите у Србији.
6. ЗАКЉУЧЦИ

1. Упоредном анализом резултата добијених помоћу златног стандарда (RT-PCR) са резултатима добијеним употребом скрининг тестова (DIF, BT, IgA и IgG) утврђено је постојање слабог слагања добијених резултата. Најбоље слагање у односу на златни стандард показује брзи тест латералне хроматографије (BT).

2. Комбинацијом тестова по критеријуму „позитивна два или више теста“ нисмо поправили слагање резултата у односу на појединачне скрининг тестове, при чему најбоље слагање у односу на златни стандард показује комбинација директне имунофлуоресценције и брзог теста (DIF+BT), мада ни овом комбинацијом није поправљено слагање у односу на BT.

3. Комбинацијом тестова по критеријуму „позитиван било који тест“ такође нисмо поправили слагање резултата у односу на појединачне скрининг тестове. При томе, најбоље слагање у односу на златни стандард показује комбинација брзог теста и серумског нивоа IgA (BT/IgA), али ни овом комбинацијом није поправљено слагање у односу на BT.

4. Поређењем дијагностичке ефикасности појединачних скрининг тестова утврдили смо да BT, по већини анализираних параметара, уз супериорну специфичност (100%), позитивну предиктивну вредност (100%), проширен Јуденов индекс (130%) и дијагностичку тачност (97%) показује најбољу дијагностичку ефикасност. Ипак, због ниске сензитивности (33%) ова метода се не може препоручити за дијагнозу акутне хламидијалне инфекције.

5. Тест директне имунофлуоресценције и серумски ниво IgA и IgG антитела, у односу на BT, показују боље уравнотежен однос сензитивности и специфичности, али се због изразито ниске позитивне предиктивне вредности ни ови тестови не могу препоручити за дијагнозу акутне хламидијалне инфекције.

6. Комбинацијом тестова по критеријуму „позитивна два или више теста“ нисмо успели да поправимо дијагностичку ефикасност у односу на појединачне скрининг тестове, односно BT који је појединачно имао најбоље параметре дијагностичке ефикасности. Сходно томе, ове комбинације тестова се не могу препоручити за дијагнозу акутне хламидијалне инфекције.

7. Комбинацијом тестова по критеријуму „позитиван било који тест“ такође нисмо успели да поправимо дијагностичку ефикасност у односу на појединачне скрининг тестове. Ипак, комбинација DIF/IgA која показује добро избалансиран однос сензитивности и специфичности уз супериорну сензитивност од 100% се и поред ниске
позитивне предиктивне вредности може користити у ситуацијама које захтевају високу сензитивност.

8. ROC анализом серумског нивоа IgA и IgG антитела на хламидијални MOMP антиген и одређивањем нових cut–off вредности (на основу карактеристика ROC криве) поправили смо дијагностичку ефикасност ових тестова у односу на резултате добијене на основу cut–off вредности препоручених од стране производача теста.

9. Коришћењем нових cut–off вредности серумски ниво IgG показује високо избалансиран однос сензитивности и специфичности уз супернорну сензитивност од 100%, те се и поред ниске позитивне предиктивне вредности може користити у ситуацијама које захтевају високу сензитивност.

10. Применом нових cut-off вредности дефинисаних на основу ROC анализе, дијагностичка ефикасност комбинације IgA+IgG теста (позитивна оба теста) и комбинације IgA/IgG (позитиван било који тест) је значајно повећана у односу на резултате добијене на основу cut–off вредности препоручених од стране производача теста.

11. Економска анализа указује да су, за дати сценарио, најмањи укупни трошкови по пацијенту код коришћења брзог теста, те је стога примена овог теста доминантна економска стратегија, а прве алтернативе су серолошке методе.

12. Примена комбинације тестова није исплатива економска стратегија јер су укупни трошкови по пацијенту већи од трошкова примене појединачних тестова, а у случају комбинације директног и сериолошких тестова приближавају се најмање исплативој стратегији, примене PCR методе. Имајући у виду претходну анализу дијагностичке ефикасности комбинованих тестова, таквом праксом се једино увећавају трошкови анализе, без битно унапређених дијагностичких перформанси.

13. Иако су дијагностичке перформансе свих тестова, како појединачних, тако и комбинованих, у односу на PCR методу знатно слабије, њена висока почетна цена, у условима трошкова националног здравственог система, не може да се компензује бојим дијагностичким резултатима у укупном економском профилу датог сценарија.
7. ЛИТЕРАТУРА

99. Schachter J, Chernesky MA, Willis DE, Fine PM, Martin DH, Fuller D, Jordan JA, Janda W, Hook EW. Vaginal swabs are the specimens of choice when screening for *Chlamydia trachomatis* and *Neisseria gonorrhoeae*: results from a multicenter evaluation of the APTIMA assays for both infections. Sex Transm Dis 2005;32:725-8.

111. Johnson RE, Newhall WJ, Papp JR, Knapp JS, Black CM, Gift TL, Steece R, Markowitz LE, Devine OJ, Walsh CM. Screening tests to detect *Chlamydia*

120. CDC. False-positiveresults with the use of chlamydial tests in the evaluation of suspected sexual abuse –Ohio 1999.MMWR 1991;39:932-5.

129. Libbus MK. Chlamydia Rapid Test was moderately accurate for diagnosing Chlamydia infection in women. Evid Based Nurs. 2008;11: 89.

158. Hamers FF, Massol J, Maillère P; participates of Round Table n° 5 Giens XXV. How to best define target populations of medicines in view of their coverage by the national health insurance scheme? Therapie. 2010;65:341-5, 335-9.

162. Donders GG, van Gerven V, de Wet HG, van Straten AM, de Boer F. Rapid antigen tests for Neisseria gonorrhoeae and Chlamydia trachomatis are not accurate for

