

CLINICAL MEDICINE 1

FOURTH YEAR

2024/2025.

Subject:

NUCLEAR MEDICINE

The course is evaluated with 4 ECTS. There are 3 hours of active teaching per week (1 hour of lecture, 1 hour of work in a small group, 1 hour of seminars).

Teachers:

	Name and surname	e-mail address	Title
1.	Vladimir Vukomanović	vukomanovic@gmail.com	Associate professor
2.	Vesna Ignjatović	vesnaivladaignjatovic@gmail.com	Assistant professor
3.	Katarina Vuleta Nedić	kvuleta87@gmail.com	Teaching assistant

COURSE STRUCTURE:

Module	Name of the module	Weeks	Lectures weekly	Work in a small group per week	Teacher in charge
1	Biophysical basis and clinical application of nuclear medicine imaging	7	1	1	Assoc. Prof. Dr Vladimir Vukomanović
2	Clinical application of nuclear medicine imaging and therapy	8	1	1	Asst. Prof. Dr Vesna Ignjatović
					Σ 15+15=30

EVALUATION:

In the points-based grading system, the grade is equivalent to a total number of points earned in a class and each activity (see tables):

ACTIVITY DURING THE LESSON:

Student can earn up to 30 points by answering questions and seminars from every lecture week. During the special part of the work in a small group the student can earn 0-2 points in accordance with the acquired knowledge.

MODULE TESTS:

Student can earn up to 40 points according to the attached table.

FINAL EXAM:

Students can earn up to 30 points, at final evaluation of acquired knowledge and skills. The final exam covers the overall knowledge throughout the entire lesson materials and curriculum. Examinations are performance assessments and can be carried out in written and/or oral form. The final examination is held before a committee. During the examination, the student's task is to respond to the 5 randomly drawn questions (each question is worth 0-6 points).

MODULE		MAXIMUM NUMBER OF POINTS			
		Activity during the lesson	Module tests	Final exam	Σ
1	Fundamentals of biophysics and clinical application of diagnostic procedures in nuclear medicine	14	20		34
2	Clinical application of nuclear medicine diagnostic and therapeutic procedures	16	20		36
				30	30
	Σ	30	40	30	100

TEACHING CONSULTATIONS: Consultations can be scheduled with the head of the department. Prof. Dr Vladimir Vukomanović, <u>vukomanovic@gmail.com</u>

The final grade is formed as follows:

In order to pass the course, the student must obtain a minimum of 51 points, and pass all the modules. In order to pass the module, the student must:

- 1. earn more than 50% of points from the module
- 2. earn more than 50% of points from activity during the lessons
- 3. pass the module test, with minimum 50% of correct answers

Passing all the modules, the student can gain the maximum of 70 points. Passing the final exam, the student can earn the maximum of 30 points in addition. The final grade is formed as the sum of total number of points from the module and the final exam, in accordance with the table.

Number of points won	Grade
0 - 50	5
51 - 60	6
61 - 70	7
71 - 80	8
81 - 90	9
91 - 100	10

MODULE TESTS

MODULE 1.

MODULE 1. TEST 0-20 POINTS

EVALUATION OF MODULE 1.

The test has 20 questions. Each question is worth 1 point.

MODULE 2.

MODULE 2. TEST 0-20 POINTS

EVALUATION OF MODULE 2. The test has 20 questions.

Each question is worth 1 point.

LITERATURE:

Module	The name of the textbook	Authors	Publisher
Fundamentals of biophysics and clinical application of diagnostic procedures in nuclear medicine		Shah C, Bradshaw M, Dalal I.	Philadelphia: Wolters Kluver Lippincott Williams&Wilkins 2021.
Clinical application of nuclear medicine diagnostic and	Nuclear Medicine and Molecular Imaging: The Requisites.	O'Malley J, Ziessman H. 5th edition.	Elsevier Science; 2020.
therapeutic procedures	Nuclear Medicine Physics. 8th edition.	Chandra R, Rahmim A.	Philadelphia: Wolters Kluwer; 2018.

The presentations can be found on the website of the Faculty of Medical Sciences :www.medf.kg.ac.rs

PROGRAM:

MODULE 1: BIOPHYSICAL BASIS AND CLINICAL APPLICATION OF NUCLEAR MEDICINE IMAGING

TEACHING UNIT 1 (FIRST WEEK):

A BIOPHYSICAL BASIS OF DIAGNOSTIC AND THERAPEUTIC PROCEDURES

1 hour of lecture	1 hour of work in small group
• Biophysical basis of diagnostic and therapeutic procedures in nuclear medicine	
Goals:Refresh your understanding of atomic and nuclear structureComprehend the biological and physical principles underlying	 Biophysics for nuclear medicine Goals: Understand and adopt the biophysical
 Comprehend the biological and physical principles underlying radionuclide techniques Understand the physical basis of radioactive isotopes Adopt the basic principles of the interaction of radiation with matter 	basis of nuclear medicine

TEACHING UNIT 2 (SECOND WEEK):

IMAGING SYSTEMS IN NUCLEAR MEDICINE

1 hour of lecture	1 hour of work in small group
• Imaging systems in nuclear medicine	• Imaging systems in nuclear medicine
 Goals: Nuclear medicine instrumentation The gamma scintillation camera Positron emission tomography - PET Hybrid imaging systems - SPECT/CT, PET/CT 	Goals: • Understand and adopt the working principles of the detectors used in nuclear medicine

TEACHING UNIT 3 (THIRD WEEK):

RADIOPHARMACOLOGY

1 hour of lecture	1 hour of work in small group
 Radiopharmaceuticals Radionuclide generators Biophysical basis of radionuclide application in medicine 	 Radionuclide generators The process of radiopharmaceutical labeling
Goals: • Radionuclides production • 99Mo-99mTc generator • radiopharmaceutical chemistry • mechanisms of biodistribution of radiopharmaceuticals • RIA (radioimmuno assay)	 Goals: Perform elution the test generator Understand the principles of preparation of radiopharmaceuticals Understand the basic principles of RIA analyses

TEACHING UNIT 4 (FOURTH WEEK):

RADIOBIOLOGY AND RADIATION PROTECTION

1 hour of lecture	1 hour of work in small group
 Sources and types of ionizing radiation The biological effects of radiation exposure Mechanisms of cell damage Stochastic and deterministic radiation effects. Doses Radiation protection (professionally exposed personnel, patients, other persons). 	• Radiation protection Goals:
 Goals: The impact of ionizing radiation on cells and the entire organism. Deterministic and stochastic effects of radiation Etiology and pathogenesis of acute and chronic radiation syndrome 	• Understand and adopt the principles of protecting personnel, patients and third parties from ionizing radiation

TEACHING UNIT 5 (FIFTH WEEK):

DIAGNOSTIC PROCEDURES IN CARDIOLOGY

1 hour of lecture	1 hour of work in small group
 First Pass technique -Radionuclide angiocardiography Radionuclide ventriculography (equilibrium ECG-gated technique) Myocardial perfusion imaging Visualization of acute myocardial infarction Evaluation of myocardial metabolism Determination of blood volume, plasma volume and red blood cell volume Determination of erythrocytes and platelets lifespan 	Nuclear cardiologyClinical application
 Goals: Indications, basic principles for nuclear angiocardiography and ventriculography (equilibrium ECG-gated) Indications, basic principles for myocardial perfusion imaging Indications, basic principles for acute myocardial infarction imaging Indications, basic principles for myocardial viability Positron emission tomography and hybrid visualization systems in cardiology 	Goals: • Demonstration and discussion of clinical cases in nuclear cardiology

TEACHING UNIT 6 (SIXTH WEEK):

DIAGNOSTIC PROCEDURES IN THYROIDOLOGY

1 hour of lecture	1 hour of work in small group
 Morphological and functional assessment of the thyroid gland Functional and morphological in vivo tests Functional in vitro tests The role of nuclear medicine in the diagnosis and therapy of benign 	Nuclear endocrinologyClinical application
diseases of the thyroid gland. Treatment of hyperthyroidism.	Goals:Demonstration and discussion of clinical cases in nuclear
Goals:Indications, basic principles for thyroid gland assessmentClinical significance of radionuclide therapy of benign thyroid disorders	endocrinology and radioiodine treatment of hyperthyroidism (Graves' disease and toxic goiter)

TEACHING UNIT 7 (SEVENTH WEEK):

DIAGNOSTIC PROCEDURES IN ENDOCRINOLOGY

1 hour of lecture	1 hour of work in small group
 Imaging and functional assessment of the parathyroid glands Imaging and functional assessment of the cortex and medulla of the adrenal glands, as well as pituitary gland. 	Nuclear endocrinologyClinical application
• Somatostatin receptor scintigraphy (imaging of NET's)	Goals:
Goals:Indications, basic principles for endocrine glands disordres (parathyroid glands, cortex and medulla of the adrenal glands and pituitary gland)	• Demonstration and discussion of clinical cases in nuclear endocrinology

MODULE 2: CLINICAL APPLICATION OF NUCLEAR MEDICINE IMAGING AND THERAPY

TEACHING UNIT 8 (EIGHT WEEK):

DIAGNOSTIC PROCEDURES IN NEUROLOGY AND PSYCHIATRY

1 hour of lecture	1 hour of work in small group
 Cerebral radionuclide angiography Standard brain scintigraphy Cisternography. The determination of regional cerebral blood flow. Brain perfusion scan Imaging of brain metabolism. Functional brain receptor imaging Imaging of brain tumors 	 Nuclear neurology and psychiatry Clinical application
 Goals: Indications, basic principles for: standard brain scintigraphy, cisternography of regional cerebral blood flow, brain perfusion scan, metabolic and functional brain imaging Indications, basic principles for neuroimaging in psychiatric disorders 	 Goals: Demonstration and discussion of clinical cases in neurology and psychiatry

TEACHING UNIT 9 (NINTH WEEK):

DIAGNOSTIC PROCEDURES IN GASTROENTEROLOGY

1 hour of lecture	1 hour of work in small group
 Salivary gland scintigraphy Esophageal transit scintigraphy and gastroesophageal reflux scintigraphy. Gastric emptying scintigraphy. Enterogastric reflux detection Nuclear medicine breath tests Intestinal absorption tests in gastroenterology Imaging of intestinal bleeding. Imaging of Meckel's diverticulum. 	 Nuclear gastroenterology Clinical application
 Inaging of intestinal bleeding. Imaging of Mecker's diverticulum. Goals: Indications, basic principles for salivary gland scintigraphy, esophageal transit scintigraphy, gastroesophageal, gastric emptying, enterogastric reflux and breath tests in nuclear medicine 	 Goals: Demonstration and discussion of clinical cases in nuclear gastroenterology

DIAGNOSTIC PROCEDURES IN HEPATOLOGY

1 hour of lecture	1 hour of work in small group
 Hepatobiliary scintigraphy Liver blood pool scan Liver and spleen scintigraphy 	Nuclear hepatologyClinical application
Goals:Indications, basic principles for liver diseases	Goals: • Demonstration and discussion of clinical cases in nuclear hepatology

TEACHING UNIT 11 (ELEVENTH WEEK):

DIAGNOSTIC PROCEDURES IN PULMONOLOGY

1 hour of lecture	1 hour of work in small group
 Lung perfusion scan Ventilation lung scan Aerosols ventilation scintigraphy Imaging of malignant tumors Goals: Indications, basic principles for lung perfusion and ventilation scintigraphy Indications, basic principles for lung tumors imaging 	 Nuclear pulmonology Clinical application Goals: Demonstration and discussion of clinical cases in nuclear pulmonology

TEACHING UNIT 12 (TWELFTH WEEK):

DIAGNOSTIC PROCEDURES IN NEPHROUROLOGY

1 hour of lecture	1 hour of work in small group
 Radiorenography. Diuretic radiorenography. Static and dynamic kidney scintigraphy. GRF and ERPF measurement. 	Nuclear nephrourologyClinical application
 Goals: Radiopharmaceuticals for kidney function evaluation. Indications, basic principles for radiorenography Indications, basic principles for renal scintigraphy 	Goals:Demonstration and discussion of clinical cases in nuclear nephrourology

TEACHING UNIT 13 (THIRTEENTH WEEK):

DIAGNOSTIC PROCEDURES IN ONCOLOGY 1

1 hour of lecture	1 hour of work in small group
 Tumor-seeking radiopharmaceuticals Imagin of solid tumors Imaging metastatic disease Somatostatin receptor scintigraphy Lymphoscintigraphy - intraoperative detection of sentinel lymph nodes 	Nuclear oncologyClinical application

- Bone scintigraphy in primary and secondary bone tumors
- Immunoscintigraphy.

Goals:

- Radiopharmaceuticals for the of malignant tumors imaging
- Indications, basic principles for malignant tumors imaging
- Indications, basic principles for somatostatin receptor scintigraphy
- Indications, basic principles for intraoperative detection of tumors and sentinel lymph nodes
- Indications, basic principles for bone scintigraphy
- Indications, basic principles for immunoscintigraphy

TEACHING UNIT 14 (FOURTEENTH WEEK):

DIAGNOSTIC PROCEDURES IN ONCOLOGY 2

Goals:

• Demonstration and discussion on different cases in nuclear oncology

1 hour of lecture	1 hour of work in small group
 Positron emission tomography PET/CT Pharmacokinetics and application of ¹⁸FDG The role of PET in the diagnostic algorithm The role of PET in TNM tumor classification (staging, restaging, follow up) The role of PET in the therapeutic response (PERCIST vs RECIST) The role of PET in radiation therapy planning 	 Nuclear oncology Clinical application Goals:
 Goals: PET radiopharmaceuticals malignant tumors imaging Understand the ¹⁸FDG biokinetics in malignant tumors Indications, basic principles for PET imaging, therapeutic response of malignant and radiotherapy planning. 	• Demonstration and discussion on different cases in nuclear oncology

TEACHING UNIT 15 (FIFTEENTH WEEK):

RADIONUCLIDE THERAPY

1 hour of lecture	1 hour of work in small group
 Radiopharmaceuticals for radionuclide therapy Radionuclide therapy of malignant tumors of the thyroid gland, neuroendocrine tumors, liver cancers, painful bone metastases. Radioimmunotherapy New directions in Cancer Treatment using radionuclide therapy 	Nuclear medicine in therapyClinical application
 Goals: Radionuclides for the treatment of malignant tumors Indications, basic principles for radionuclide therapy of the thyroid gland cancer, liver cancer, neuroendocrine tumors, painful bone metastases Indications, basic principles for radioimmunotherapy 	Goals:Indications for radionuclide therapy

WEEKLY COURSE SCHEDULE

COURSE	MONDAY
NUCLEAR MEDICINE (1+1)	LECTURES 09:40 – 10:25 (Institute for Emergency Medical Aid) PRACTICE 10:30 - 12:00 (Nuclear Medicine Center UCCK)

module	week	type	method unit name	teacher
1	1	L	A BIOPHYSICAL BASIS OF DIAGNOSTIC AND THERAPEUTIC PROCEDURES	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
1	1	Р	A BIOPHYSICAL BASIS OF DIAGNOSTIC AND THERAPEUTIC PROCEDURES	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
1	2	L	IMAGING SYSTEMS IN NUCLEAR MEDICINE	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
1	2	Р	IMAGING SYSTEMS IN NUCLEAR MEDICINE	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
1	3	L	RADIOPHARMACOLOGY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
1	3	Р	RADIOPHARMACOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
1	4	L	RADIOBIOLOGY AND RADIATION PROTECTION	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
1	4	Р	RADIOBIOLOGY AND RADIATION PROTECTION	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
1	5	L	DIAGNOSTIC PROCEDURES IN CARDIOLOGY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
1	5	Р	DIAGNOSTIC PROCEDURES IN CARDIOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić

module	week	type	method unit name	teacher
1	6	L	DIAGNOSTIC PROCEDURES IN THYROIDOLOGY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
1	6	Р	DIAGNOSTIC PROCEDURES IN THYROIDOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	7	L	DIAGNOSTIC PROCEDURES IN ENDOCRINOLOGY	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	7	Р	DIAGNOSTIC PROCEDURES IN ENDOCRINOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	8	L	DIAGNOSTIC PROCEDURES IN NEUROLOGY AND PSYCHIATRY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
2	8	Р	DIAGNOSTIC PROCEDURES IN NEUROLOGY AND PSYCHIATRY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	9	L	DIAGNOSTIC PROCEDURES IN GASTROENTEROLOGY	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	9	Р	DIAGNOSTIC PROCEDURES IN GASTROENTEROLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	10	L	DIAGNOSTIC PROCEDURES IN HEPATOLOGY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
2	10	Р	DIAGNOSTIC PROCEDURES IN HEPATOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić

module	week	type	method unit name	teacher
2	11	L	DIAGNOSTIC PROCEDURES IN PULMONOLOGY	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	11	Р	DIAGNOSTIC PROCEDURES IN PULMONOLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	12	L	DIAGNOSTIC PROCEDURES IN NEPHROUROLOGY	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	12	Р	DIAGNOSTIC PROCEDURES IN NEPHROUROLOGY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	13	L	DIAGNOSTIC PROCEDURES IN ONCOLOGY 1	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	13	Р	DIAGNOSTIC PROCEDURES IN ONCOLOGY 1	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	14	L	DIAGNOSTIC PROCEDURES IN ONCOLOGY 2	Asst. Prof. Dr Vladimir Vukomanović (replacement Asst. Prof. Dr Vesna Ignjatović)
2	14	Р	DIAGNOSTIC PROCEDURES IN ONCOLOGY 2	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić
2	15	L	RADIONUCLIDE THERAPY	Asst. Prof. Dr Vesna Ignjatović (replacement Asst. Prof. Dr Vladimir Vukomanović)
2	15	Р	RADIONUCLIDE THERAPY	Asst. Prof. Dr Vesna Ignjatović Asst. Prof. Dr Vladimir Vukomanović TA Katarina Vuleta Nedić

QUESTIONS FOR THE FINAL EXAM

- 1. Interactions of gamma radiation with matter;
- 2. Ionization detectors;
- 3. Gamma scintillation camera-basic characteristics;
- 4. Positron emission tomography-PET;
- 5. Machines for production of radionuclides;
- 6. Radiopharmaceuticals (characteristics, biodistribution);
- 7. 99 Mo- ${}^{\bar{9}9m}$ Tc generator;
- 8. Use of radiolabeled compounds in metabolic assessment;
- 9. Biological effects of radiation;
- 10. Radiation protection of professionally exposed staff and patients;
- 11. Functional assessment of the thyroid gland;
- 12. Thyroid scintigraphy;
- 13. Adrenal cortical scintigraphy;
- 14. Parathyroid scintigraphy;
- 15. Nuclear angiocardiography NAC and radionuclide ventriculography RVG;
- 16. Myocardial perfusion scan;
- 17. Novel radiopharmaceuticals and methods of functional and morphological assessment in nuclear cardiology;
- 18. Lung perfusion scan;
- 19. Ventilation lung scintigraphy;
- 20. Salivary gland scintigraphy;
- 21. Esophageal transit scintigraphy, gastroesophageal reflux scintigraphy and enterogastric reflux detection;
- 22. Detection of intestinal bleeding;
- 23. Detection of Meckel's diverticulum;
- 24. Colloid and blood pool liver scintigraphy;
- 25. Spleen scintigraphy;
- 26. Hepatobiliary scintigraphy;
- 27. Diuretic radiorenography;
- 28. Dynamic kidney scintigraphy;
- 29. Static kidney scintigraphy;
- 30. Measurement of red cell lifespan and determining the place of their destruction;
- 31. Ferrokinetics;
- 32. Bone marrow scintigraphy;
- 33. Measurement of vitamin B12 absorption Schilling's test
- 34. Standard brain scintigraphy;
- 35. Brain perfusion scan;
- 36. Imaging brain metabolism;
- 37. The principle of visualizing pathological entities with tumorotropic radiopharmaceuticals in nuclear oncology?
- 38. The principle and clinical significance of scintigraphy with radiolabeled somatostatin analogs?
- 39. The principle and clinical significance of scintigraphy with radiolabeled mIBG?
- 40. Clinical significance of lymphoscintigraphy in oncological surgery?
- 41. Principle and clinical significance of bone scintigraphy?
- 42. Immunoscintigraphy;
- 43. Radiopharmaceuticals for PET diagnostics in oncology;
- 44. The role of ¹⁸FDG-PET in diagnostic oncology?
- 45. Therapeutic use of radionuclides and radiopharmaceuticals in the treatment of malignant tumors;
- 46. The principle of radioiodine treatment of differentiated thyroid carcinomas;
- 47. The principle of treatment of neuroendocrine tumors with radiolabelled somatostatin analogues?
- 48. Therapy of pheochromocytoma and other neuroectodermal tumors with ¹³¹MIBG;
- 49. Therapy of painful bone metastases;
- 50. Therapy of hyperthyroidism with radioactive iodine